
Computer Networks xxx (2008) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Equilibrium analysis through separation of user and network behavior

Y.C. Tay a,*, Dinh Nguyen Tran b, Eric Yi Liu c, Wei Tsang Ooi d, Robert Morris e

a National University of Singapore, Mathematics Department, 2 Science Drive 2, Kent Ridge 117543, Singapore
b New York University, Department of Computer Science, Courant Institute of Mathematics, 715 Broadway Room, New York, NY 10003, USA
c University of North Carolina, Department of Computer Science, Sitterson Hall, Chapel Hill, N.C. 27599-3175, USA
d National University of Singapore, Department of Computer Science, Law Link, Singapore 117590, Singapore
e Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 March 2008
Received in revised form 5 August 2008
Accepted 9 September 2008
Available online xxxx

Responsible Editor: A. Abouzeid

Keywords:
User–TCP interaction
User backoff
Aborted downloads
Internet robustness
Bandwidth provisioning
1389-1286/$ - see front matter � 2008 Elsevier B.V
doi:10.1016/j.comnet.2008.09.008

* Corresponding author. Tel.: +65 68742949.
E-mail address: dcstayyc@nus.edu.sg (Y.C. Tay).

Please cite this article in press as: Y.C. T
Comput.Netw. (2008), doi:10.1016/j.com
Internet complexity makes reasoning about traffic equilibrium difficult, partly because
users react to congestion. This difficulty calls for an analytic technique that is simple, yet
have enough details to capture user behavior and flexibly address a broad range of issues.

This paper presents such a technique. It treats traffic equilibrium as a balance between
an inflow controlled by users, and an outflow controlled by the network (link capacity, con-
gestion avoidance, etc.). This decomposition is demonstrated with a surfing session model,
and validated with a traffic trace and NS2 simulations.

The technique’s accessibility and breadth are illustrated through an analysis of several
issues concerning the location, stability, robustness and dynamics of traffic equilibrium.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Given an Internet usage pattern (web surfing, video
streaming, etc.), the network protocols would adjust to
that pattern (packet routing, congestion control, etc.) and
eventually settle into an equilibrium state of traffic flow.
When there is a change in the usage (e.g. flash crowd) or
network (e.g. router misconfiguration), this equilibrium
would shift. As the Internet grows larger and more com-
plex, researchers and engineers need some technique to
help them cut through the complexity, so they can reason
intuitively about shifts in traffic equilibrium.

This need is particularly acute if the usage pattern inter-
acts with network performance. For example, although TCP
exercises congestion control, traffic volume is not deter-
mined by TCP alone—while TCP controls the flow in a con-
. All rights reserved.

ay et al., Equilibrium a
net.2008.09.008
nection, the number of connections is controlled by users.
The following loop illustrates the interaction between
users and TCP:

User–TCP feedback cycle

(i) Congestion causes TCP to reduce bandwidth per
connection.

(ii) The reduced bandwidth and increased delay causes
users to launch fewer connections, or abandon them.

(iii) The decrease in number of active connections allows
TCP to increase flow per connection.

(iv) The flow increase encourages users to launch more
connections, causing congestion to increase and
returning to (i).

It is not clear where (i.e. what equilibrium state) this cy-
cle converges to.

Besides making it hard to reason about traffic equilib-
rium, Internet complexity also broadens the range of is-
sues. We illustrate this breadth by posing some questions:
nalysis through separation of user and network behavior,

mailto:dcstayyc@nus.edu.sg
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

Download bandwidth (KBps)

0 200 400 600 800 1000 1200 1400

p_
ab

or
t

0.0

0.2

0.4

0.6

0.8

1.0

D
ow

nl
oa

d
ba

nd
w

id
th

 c
df

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

p_abort
download bandwidth cdf

Fig. 1. Evidence for Uabort
backoff : as download bandwidth decreases, the abort

probability increases. The cumulative distribution function (cdf) is
represented by the smoother curve.

Session bandwidth (KBps)

0 20 40 60 80 100 120

#c
om

pl
et

ed
 d

ow
nl

oa
ds

/s
es

si
on

0

20

40

60

80

100

120

S
es

si
on

 b
an

dw
id

th
 c

df

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2. Evidence for Usession
backoff : as session bandwidth decreases, number of

completed downloads per session decreases; here, we focus on session
bandwidths of 20 KBytes/s or less— the cdf indicates that they make up
95% of the data.

2 Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx

ARTICLE IN PRESS
The advent of file-sharing systems has resulted in much
bandwidth being consumed by transfers of large (e.g. MP3)
files [37].
(Q1) Can elephantine transfers cause a collapse of Inter-

net performance?
Another cause for worry is the growing use of UDP,

which does not exercise congestion control. For example,
Internet telephony is a UDP application that has become
hugely popular. Whereas a user who initiates a large file
transfer is likely to ignore the transfer till after it com-
pletes, a voice-over-IP (VoIP) user is actively engaged in
a telephone connection. The latter implies that one must
consider how users behave dynamically when analyzing
traffic equilibrium [7]:
(Q2) Does user behavior help or hurt Internet perfor-

mance?
This issue remains even if all UDP traffic is TCP-friendly

[16], since we still need to resolve the user–TCP feedback
cycle. The cycle also makes the answer to the following
not obvious:
(Q3) Would an increase in bottleneck bandwidth relieve

congestion?
For example, Yang and de Veciana reckoned that over-

provisioned bandwidth will be quickly consumed, possibly
by unwanted traffic [42].In any case, overprovisioning can-
not prevent overloading (even in the Internet backbone
[22]), since failure in one link can strain another link with
redirected traffic.
(Q4) How does traffic reach a new equilibrium when load

changes?
Of course, the answer partly depends on TCP’s conges-

tion avoidance mechanism, but flow volume is not com-
pletely controlled by TCP, so:
(Q5) What role does TCP play in determining traffic

equilibrium?

1.1. Congestion-induced user behavior in equilibrium analysis

Since traffic volume is partly controlled by users, one
must consider their reaction to congestion when address-
ing questions like Q1–Q5. As Prasad and Dovrolis observed:
TCP’s congestion control and capacity overprovisioning are
not the only reasons for the rare occurrence of significant
congestion events in the Internet today [35].

Most Internet traffic is carried by TCP, so we focus
attention on the dominant TCP application—namely, the
web. A web surfer reacts to congestion in two ways:

Uabort
backoff : she may abort a slow download by clicking

‘‘Stop”, ‘‘Reload” or another hyperlink, and
Usession

backoff : she may cut short her surfing session.

Bonald and Roberts point out such user reaction [6], and
we found evidence for Uabort

backoff and Usession
backoff in traffic traces:

Fig. 1 shows that, as bandwidth per download decreases,
the probability that the download is aborted increases;
Fig. 2 shows that, as bandwidth in a session decreases,
the number of completed downloads in a session de-
creases. One can view such behavior as a form of conges-
tion-induced user backoff.
Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
Hence, the objective of this paper is to present an intui-
tive and flexible technique for analyzing traffic equilibrium—
as an interaction between user and network behavior—that
can be applied to a broad range of issues.

Specifically, we relate the user–network decomposition
to the TCP instability region observed by Garetto et al. [18],
the asymmetry in congestion buildup and decay observed
by Iyer et al. [22], and the primal–dual formulation by
Kelly et al. [24,28]. We also use it to identify the different
contributions made by users and TCP to robustness of the
equilibrium, examine how user reaction affects bandwidth
provisioning, formulate a rule for anticipating overload,
and formalize the deleterious effect of elephantine down-
loads on performance.

1.2. Current models and techniques

Our starting point is a model for web surfing. Although
surfer reaction to delays was mentioned by several authors
[4,14,3], it is not modeled by most studies of web traffic
[9,12,20,29]. For example, Key et al. study the benefit to
‘‘far-sighted” users if they defer their bandwidth demand
nalysis through separation of user and network behavior,

Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx 3

ARTICLE IN PRESS
when the network is in a congested phase, but this
postponed demand is not reduced, and there are no aborts
[25].

There are studies of user-initiated TCP connection abor-
tion [17,6,36], but a click may generate more than one TCP
connection. Also, there are several surfer impatience mod-
els for abort ðUabort

backoffÞ [10,41], but none for sessions
ðUsession

backoffÞ. Choi and Limb’s behavioral model [12] and Bar-
ford and Crovella’s user equivalent [5] also do not include
sessions, whereas the layered model by Hlavacs and Kotsis
does not provide for user reaction to delays [20].

Similarly, the various measurement studies to charac-
terize web traffic [9,27,29] implicitly assume user behavior
is invariant under congestion. Vicari and Köhler measure
how modem users’ behavior depends on access speed
[40], but this effect is not congestion-induced. Studies on
how users react to server delays [14] and models of shop-
ping behavior at e-commerce sites [31] are only marginally
relevant since, in our context, we are considering multiple
surfers—they may visit different websites, and each user
may visit multiple websites.

The surfing session model we present here (Figs. 3 and
19) is therefore the first to study both Uabort

backoff and Usession
backoff .

Recall that we focus on surfing only as a setting for
studying traffic equilibrium. There is a huge literature on
equilibrium analysis for classical telephone networks,
including papers on repeated call attempts under conges-
tion [11]. However, there are important differences: cir-
cuit-switched calls have dedicated bandwidth, a ‘‘session”
rarely has more than one call, and an aborted call does
not consume bandwidth. (We will see in Section 6 how
bandwidth wastage from abortion can cause a perfor-
mance collapse.)

The literature on Internet research has various tech-
niques for equilibrium analysis. Two recently popular ones
use game theory [2] and mathematical programming [24],
but these are techniques unsuitable for intuitive, back-of-
an-envelope arguments. In performance modeling, sto-
chastic analysis is a well-established technique but, for
tractability, one has to choose the right level of detail;
e.g. Gromoll et al. point out that the literature has few re-
sessionr

clickr

r supply

retryq

nextq

nextp

pretry

wait−abort

abort abortp p

This corresponds to

wait−complete

1−

think
the box in Fig. 4.

wait−state

Fig. 3. Surfing session model: pretry is the proportion of aborted down-
loads that are followed by another click in the session, and pnext is the
proportion of completed downloads that are followed by another click in
the session.

Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
sults on processor-sharing queues (modeling bandwidth
sharing) with impatient customers [19].

Since our objective is to offer an abstraction for
researchers and engineers to reason intuitively about traf-
fic equilibrium, the model must not be intricate, yet have
enough details to address questions like Q1–Q5. For this,
we adapt an old fluid approximation by Kleinrock and
Lam [26] that view an equilibrium as a balance between
input and output flows. The technique also provides
closed-form expressions that facilitate the analysis.

We will describe other related work as the need arises.
1.3. Our contribution

This paper’s contributions are:

(i) The first model to study both Uabort
backoff and Usession

backoff in
user backoff. This surfing session model can be used
to generate realistic surfing traffic in network simu-
lation, compare web traffic traces (Section 4), and
help Internet service providers anticipate overload
(Section 6.9).

(ii) An intuitive technique for analyzing traffic equilibrium.
This technique is based on a user–network model
that separates user and network behavior into two
curves, and the traffic equilibrium is where these
two curves intersect (Fig. 13). When there is a
change in network condition, its impact on the equi-
librium can be analyzed by considering how that
change affects each curve individually. This offers a
mechanism for breaking the user–TCP feedback
cycle when reasoning about the equilibrium, and
can be used to address questions like those above
(Q1: Section 7.1; Q2: Section 6.5; Q3: Section 6.8;
Q4: Section 6.4; Q5: Section 6.6).
1.4. Overview of paper

We begin by introducing the surfing session model in
Section 2. Section 3 then presents the user–network model,
consisting of two equations that encapsulate user and net-
work behavior. In the literature, ‘‘congestion” may refer to
phenomena that occur at different timescales—from
micro-granularity (e.g. sub-second packet bursts) to
medium-granularity (e.g. multi-chunk peer-to-peer down-
loads) to macro-granularity (e.g. daily peak). We will see
how this range is reflected in the equations. We also derive
an equation that characterizes the fixed point of the user–
TCP feedback cycle (Section 1).

In Section 4, we validate the models by extracting from
a tcpdump the surfing session model’s parameters, as well
as the user and network curves.

Trace analysis is restricted by the corresponding net-
work’s hardware and software configuration. We work
around this restriction by doing a simulation study. Section
5 presents user and network curves obtained with NS2

simulations [30] and fits the network curve with Padhye
et al.’s TCP equation [33] (referred to as PFTK equation be-
low). We also examine how congestion control affects the
network curve.
nalysis through separation of user and network behavior,

4 Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx

ARTICLE IN PRESS
Section 6 demonstrates how the user–network model
can be used to analyze intuitively a broad range of issues:
the location and dynamics of the equilibrium, the contribu-
tion of users and TCP to Internet robustness, how user
backoff affects bandwidth provisioning, and how overload
can be anticipated by monitoring some inequalities.

Section 7 further illustrates our models’ flexibility by
presenting a two-class model to study the effect of non-
reactive elephantine file transfers, and a closed model for
Internet service providers. Section 8 then concludes with
a summary.
2. Surfing session model

For now, we assume the user is a web surfer who reacts
to congestion, and focus on HTTP flows and user backoff.
(Section 7.1 considers UDP flows and non-reactive users.)
The model groups HTTP requests into sessions. The re-
quests in a session may span multiple sites.

We first adopt an open model, i.e. the session arrival rate
rsession is constant, regardless of congestion. Users are una-
ware of the congestion level until they arrive, so this
assumption is reasonable. Nonetheless, we will remove
this assumption in Section 7.2.

It is well-known that traffic has 24-h and weekly cycles,
so it is not constant. Our assumption of constant rsession

therefore restricts the open model to a time span of, say,
minutes. This is consistent with our focus here on user
behavior, which is manifested over a medium-granularity
timescale. Variation in rsession is, in our model, over a
macro-granularity timescale. We revisit this point later
(Sections 4.6 and 6.4).

In each session, a user sends HTTP requests with clicks
on bookmarks, hyperlinks, submit buttons, etc. For conve-
nience, we consider typing in an URL as a click too. Let rclick

be the click rate.
In general, each click generates multiple (serial or paral-

lel) HTTP request-responses; the traffic they send to the
user is called a download (equivalently, Web object [5] or
Web-request [12]). Note that one user may launch parallel
downloads with multiple browsers.

After a click, a surfer enters a wait-state. If the wait is
too long, she may abort the download; e.g. a user who is
presented with several links by a search engine may click
one link, find the download too slow, and abort it by click-
ing another link. Let pabort be the proportion of downloads
that are aborted.

We can model this behavior by splitting the wait-state
into a wait-abort state for aborted downloads and a wait-
complete state for completed downloads. We follow up
the latter with a think state for when the surfer is viewing
a completed download. Since she may click again after
viewing, or after aborting a download, we get feedback
flows. Fig. 3 shows the resulting session model. (Schroeder
et al. call such a model ‘‘partly-open” [38].)

Let pretry be the proportion of aborted downloads that
are followed by another click in the session, and pnext the
proportion of completed downloads that are followed by
another click in the session. One can think of 1� pretry

and 1� pnext as the probability of quitting a session after
Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
an aborted or completed download. The importance of
having pnext and p retry is reflected in Prasad and Dovrolis’
measurements, which showed that they generated 60–
80% of clicks [35].

This surfing session model is bare-bone simple, but we
will see that its analysis (Section 6) provides rich details.
We next present the equations that relate these variables.
3. User–network model

The key to analyzing traffic equilibrium lies in separat-
ing the two forces (user and network) that determine it.
We first decide the metric for describing network state,
then show how the session model can be decomposed into
a user–network model consisting of a user curve and a net-
work curve.
3.1. Defining network state: k concurrent downloads

We first need to define network ‘‘state”. Most analytic
models are based on a single bottleneck link [2,6,10]. We
consider, however, the general case where congestion
may be the result of interaction among multiple links in
a bottleneck subnet, without assuming any particular
topology (e.g. line/star/circle [8,17]) for this subnet. In
the following, bottleneck bandwidth refers to the traffic
capacity of this subnet.

A download takes some time to complete, so an obvious
candidate for describing the subnet’s state is the average
number of ongoing concurrent downloads, denoted by k;
this corresponds to the number of jobs in a processor-shar-
ing model [19].

We do not assume that there is a fixed number of
downloads; in fact, we want to use the model to analyze
how the equilibrium behaves dynamically (Figs. 13–18).
Rather, we aim to facilitate the analysis by deriving
closed-form expressions that relate various average values,
including k.

There are other candidate metrics for network state.
Since our focus is on congestion-induced user behavior,
one obvious choice is download time, but that includes
round-trip time and server delays that are unrelated to
congestion. Another possibility is download speed, but that
would mean squeezing the interesting parts of the graphs
into the low-bandwidth region (like in Figs. 1 and 2) in-
stead of spreading them out for clarity.

3.2. Deriving a user curve from the surfing model

The wait-state in the surfing session model (Fig. 3) thus
has k downloads in progress, with clicks arriving at rate
rclick and aborted at rate pabortrclick. The unaborted click rate
is ð1� pabortÞrclick, as illustrated in Fig. 4.

At equilibrium, the unaborted click rate is the rate of
completed downloads; this we call the goodput, and it is
the central performance measure in this paper.

To get the user and network curves, we split the wait--
state, like in Fig. 5. The user curve is then the relationship
between the unaborted click rate ð1� pabortÞrclick and k,
and the network curve is the relationship between the
nalysis through separation of user and network behavior,

rout

rclick

abortp rclick

rclickrin = (1 − pabort)

aborted

completed

click

rate of unaborted clicks

download

downloads

in progress
downloadsk

wait−state

Fig. 4. Flow of downloads (one click generates one download). rclick is the
click rate and pabort is the proportion of clicks that are aborted, so the
input rate of unaborted clicks is rin ¼ ð1� pabortÞrclick.

rclick

abortp rclick

interaction
through:

rin = rout

rclick= (1 − pabort)rin

r

in progress
k

in progress
k

downloads

downloads

out

user

network

curve

curve

Fig. 5. The model in Fig. 4 is split into two submodels: a user curve that
captures the relationship between k and the input rate of unaborted
clicks, and a network curve that captures the relationship between k and
the output rate of completed downloads. They interact to determine
system state through the equilibrium rin ¼ rout, giving the goodput.

Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx 5

ARTICLE IN PRESS
rate of completed downloads and k. Flow balance in Fig. 3
gives

rclick ¼ pretrypabortrclick þ rsession þ pnextð1� pabortÞrclick;

so the user curve is

rin ¼ ð1� pabortÞrclick ¼
ð1� pabortÞrsession

1� pabortpretry � ð1� pabortÞpnext
:

ð1Þ

If we consider pabort, pretry and pnext as functions of k—these
functions depend on user population, applications, etc.—
then Eq. (1) specifies how the input flow rin depends on
k. One can also view rin as user demand for bandwidth,
measured by goodput.

Here, we see explicitly how variation in congestion
caused by a change in session arrivals over a macro-gran-
ularity timescale is factored into the model through
rsession in Eq. (1).

3.3. Deriving a network curve with Little’s Law

Let Tabort and tcompleted be the average time spent in the
wait-abort and wait-complete states, respectively. By Lit-
Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
tle’s Law [23]—which is robust and holds for an arbitrary
bottleneck subnet—Fig. 3 gives

k ¼ pabortrclickTabort þ ð1� pabortÞrclicktcompleted;

so we get a different equation for rclick:

rclick ¼
k

pabortTabort þ ð1� pabortÞtcompleted
:

Let bTCP be the average bandwidth provided by TCP for a
(multi-connection) download; bTCP is the variable on the
horizontal axis of Fig. 1. Let Scompleted be the average size
for a completed download, so tcompleted ¼ Scompleted=bTCP.
(For our trace experiments in Section 4, these averages
are computed with hour-long data.)

One can view the network curve as the locus of equilib-
rium when the user curve shifts, so

rout ¼ ð1� pabortÞrclick ¼
k

pabort
1�pabort

Tabort þ
Scompleted

bTCP

: ð2Þ

The subnet metric k determines the other variables, so Eq.
(2) is the equation for the network curve. One can also view
rout as network supply of bandwidth, measured by goodput.

Eq. (2) shows explicitly that TCP controls rout only
through bTCP, whereas the user controls pabort, Tabort and
thus the amount of wasted bandwidth.

Note that our use of bTCP in the derivation does not as-
sume TCP is fair. With different round-trip times per con-
nection, different number of connections per download,
etc., the downloads may have very different bandwidths,
and bTCP is simply their average. Also, we see explicitly
how variation in congestion, as controlled by TCP and ac-
tive queue management over a micro-granularity time-
scale, is factored into the model through bTCP in Eq. (2).

The equilibrium rin ¼ rout gives

k ¼ ð1� pabortÞrsession

1� pabortpretry � ð1� pabortÞpnext

� pabort

1� pabort
Tabort þ

Scompleted

bTCP

� �
;

which is the fixed point [8,18] to the user–TCP feedback
cycle (Section 1).
4. Model validation with traffic trace

This section has three tasks: first, we present evidence
extracted from a tcpdump for user backoff (Uabort

backoff and
Usession

backoff); this evidence is independent of our surfing session
model (Fig. 3). Second, we present measurements of the
three probabilities that parameterize our surfing session
model. Third, we show that user and network curves can
indeed be extracted from the tcpdump, and verify that
their intersection agrees with the measured traffic
equilibrium.

4.1. SAX: surfer action extraction tool

The difficulties of extracting HTTP information from
packet-level data are well-documented [1,15]. Going
further up the stack to deduce user actions brings new
nalysis through separation of user and network behavior,

6 Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx

ARTICLE IN PRESS
complications: (i) before a web page finishes downloading,
the user may click on one of its links, thus initiating an-
other download. These two downloads are hard to separate
by using some time gap threshold, so we need to relate the
URL for the second download to the contents of the first
download. (ii) How to distinguish between aborted and
completed downloads? (iii) Downloads that are generated
by software (e.g. auto-requests for updating a web page)
need to be filtered out.

To address these additional issues, we implemented a
software tool, called SAX, to extract surfer actions from a
trace. (SAX is available at www.comp.nus.edu.sg/~tayyc/
user-network/ and described in a companion paper [39].)
In the following, we present results from using SAX to ana-
lyze a trace taken on a link in an academic network; the
trace lasted two days, and had about 50 GB of data, 5600
IP addresses and 818000 TCP connections.

4.2. Measuring subnet state with k

Recall (Section 3.1) that we focus on a bottleneck sub-
net and measure its congestion by k, the average number
of concurrent downloads. For the trace, the subnet is sim-
ply a bottleneck access link. We first verify that k is an
appropriate measure.

One expects the link congestion (however defined) to
rise and fall with the session arrival rate. Fig. 6 shows that
k does in fact track the 24-h cycle in rsession, thus supporting
our choice of k as the link metric.
Time [hours]
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

co

nc
ur

re
nt

 d
ow

nl
oa

ds
 k

0

10

20

30

40

50

60

70

80

90

se
ss

io
n

ar
riv

al
 ra

te
 [#

/s
ec

]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
congestion k
session arrival rate

Fig. 6. The link metric k rises and falls with the session arrival rate rsession

during the trace.

concurrent downloads k
0 20 40 60 80 100 120

p_
ab

or
t

0.0

0.2

0.4

0.6

0.8

1.0

co

nc
ur

re
nt

 d
ow

nl
oa

ds
 c

df

0.0

0.2

0.4

0.6

0.8

1.0

concurrent dow
0 20 40 60

p_
ne

xt

0.90

0.92

0.94

0.96

0.98

1.00

Fig. 7. The effect of congestion on pabort, pnext and pretry. The sm

Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
4.3. Verifying user behavior: pabort, pnext, pretry

Fig. 7 shows how the SAX-measured values of the prob-
abilities in the surfing session model vary with subnet
state k. As expected, pabort increases with k, while pnext

decreases.
As for pretry, it is mostly constant except for the first 10%

of k values (where pretry increases) and the last 10% of k val-
ues (where pretry decreases). Note that, as expected, pretry is
less than pnext at every congestion level k, indicating that a
user is less likely to continue a session after an abort than
after a completed download.

When pabort is plotted against the download band-
width bTCP, we get Fig. 1—showing increasing pabort as
bandwidth decreases—thus verifying Uabort

backoff . Let
ncomp=session be the average number of completed down-
loads per session. Fig. 2 shows that ncomp=session decreases
as bandwidth in a session decreases, thus verifying
Usession

backoff .
With Uabort

backoff , it must be that the (completed and
aborted) download size distribution has a thinner tail
when congestion is heavier. Fig. 8 confirms this: the tail
when k is large (36–42 h in Fig. 6) is lower than when k
is small (32–36 h and 42–47 h).

It is well known that heavy-tailed downloads are one
reason for self-similar traffic [13]. User backoff may there-
fore help smoothen self-similar traffic as congestion
increases.
nloads k
80 100 120

co

nc
ur

re
nt

 d
ow

nl
oa

ds
 c

df

0.0

0.2

0.4

0.6

0.8

1.0

concurrent downloads k
0 20 40 60 80 100 120

co

nc
ur

re
nt

 d
ow

nl
oa

ds
 c

df

0.0

0.2

0.4

0.6

0.8

1.0

p_
re

try

0.80

0.85

0.90

0.95

1.00

ooth curves are cumulative distribution functions for k.

log(download size x)

-5 0 5 10

lo
g

(P
(d

ow
nl

oa
d

si
ze

 >
 x

))

-10

-8

-6

-4

-2

0

Big k period 36-42 (hours)

Small k period 42-47 (hours)

Small k period 32-36
(hours)

Fig. 8. The distribution for (completed and aborted) download size is
lower (i.e. thinner) for large k than for small k; the hours refer to periods
in Fig. 6.

nalysis through separation of user and network behavior,

http://www.comp.nus.edu.sg/~tayyc/user-network/
http://www.comp.nus.edu.sg/~tayyc/user-network/

concurrent downloads k
0 20 40 60 80 100 120

co

nc
ur

re
nt

 d
ow

nl
oa

ds
 c

df

0.0

0.2

0.4

0.6

0.8

1.0

co

m
pl

et
ed

 d
ow

nl
oa

ds
/s

ec

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

demand curve r_session = 0.05

concurrent downloads k
0 20 40 60 80 100 120

co

m
pl

et
ed

 d
ow

nl
oa

ds
/s

ec

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

co

nc
ur

re
nt

 d
ow

nl
oa

ds
 c

df

0.0

0.2

0.4

0.6

0.8

1.0

real supply curve

Session arrival rate [#/sec]
0.00 0.02 0.04 0.06 0.08 0.10

co

nc
ur

re
nt

 d
ow

nl
oa

ds
 k

0

20

40

60

80

100

From r_session and k over time
From intersection of demand
and supply curves

Fig. 9. (a) Shows the user curve for a selected session arrival rate; (b) shows the network curve; (c) compares, for each selected session arrival rate, the
intersection point of these two curves to the multiple equilibrium points in the trace.

Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx 7

ARTICLE IN PRESS
4.4. Extracting the user curve from the tcpdump

Now, ncomp=sessionrsession gives the rate of unaborted clicks,
which is rin, i.e.

rin ¼ rsessionncomp=session: ð3Þ

Fig. 9a plots Eq. (3) for rsession ¼ 0:05 per sec. (Recall:
rsession is constant for an open model.) It shows that the user
curve mostly decreases as congestion level k increases.

With rsession fixed in (3), the user curve is basically
ncomp=session plotted against k, so Fig. 9a and 2 are essentially
the same curve but with the horizontal axis reversed (since
k and session bandwidth have, loosely speaking, a recipro-
cal relationship). From Eqs. (1) and (3), we get

ncomp=session ¼
1

1�pretry
1

pabort
�1
þ ð1� pnextÞ

:

It follows that, even if pretry is roughly constant like in
Fig. 7, the pabort increase and pnext decrease suffice to de-
crease ncomp=session as a function of k. This yields the shapes
in Fig. 2 and 9a.

4.5. Extracting the network curve from the tcpdump

To plot the network curve, we directly measure the rate
of completed downloads at each k value. The result is
Fig. 9b. This shape is confirmed by simulations (Section
5) and we will discuss it in Section 6.

4.6. Intersection of curves vs measured equilibrium

Our user–network model takes a traffic equilibrium and
views it abstractly as a balance between two forces (Fig. 5).
A crucial test is whether this abstraction matches the
reality.

For this test, we pick rsession ¼ 0:02;0:03; . . . ;0:08 for our
trace data. For each of these values k, we use Fig. 6 to deter-
mine the times t when rsession ¼ k, and the k value at t. We
thus get three or four ðk; kÞ measurements for each k.

We next plot the user curve (Fig. 9a) for this k and
determine k at its intersection with the network curve
(Fig. 9b); we thus get a ðk; kÞ pair from our user–network
model. Fig. 9c compares each such ðk; kÞ pair to the
measured values; it shows good agreement, considering
Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
the many complications and approximations in trace
analysis.

As rsession varies over time, the user curve in Fig. 9a
moves up and down while the network curve in Fig. 9b re-
mains stationary; their intersection thus yields a k value
that varies with time, like in Fig. 6.

4.7. Variation from, and changes in, the averages

Our equations are derived with average values. In truth,
two users may behave differently, and two web servers
may run different TCP versions, so pabort, Tabort, bTCP, etc.
are aggregates. While one may possibly refine our model
to account for individual variation, validating the refine-
ment will be difficult.

The average values themselves can also change. Office
workers in the day and home users at night may behave
differently, causing the user curve to change its shape. Sim-
ilarly, a hardware malfunction or software update may re-
shape the network curve. Such changes in the curves do
not affect the qualitative analysis that is the focus of this
paper.

However, for the user–network model to be used quan-
titatively in bandwidth provisioning or overload monitor-
ing (Sections 6.8 and 6.9), one will need to calibrate the
model parameters dynamically. Doing this at line rate is
probably an overkill and unnecessary; one could simply
collect a tcpdump periodically and run SAX on the traces
offline to get updates for the parameters.
5. Simulation study using NS2

The user–network model abstractly decomposes the
equilibrium into two curves. The previous section shows
that we can in fact extract these two curves from a tcp-

dump. However, trace measurements offer very little scope
for studying the user and network curves. For example, the
user population, TCP versions and link bandwidth are
fixed. To get greater flexibility for our study, we resort to
NS2 simulation [30]. In particular, we want to check if
the network curve captures the effects of congestion con-
trol, queue management, etc.

This section describes the simulation, how we obtain
the network and user curves, fitting the network curve
nalysis through separation of user and network behavior,

8 Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx

ARTICLE IN PRESS
with the PFTK equation [33], and the effects of congestion
control and queue management.

5.1. FTO: frustration timeout Tabort

The network curve (2) depends crucially on pabort and
the average time Tabort before an abort. For the simulation,
we model Uabort

backoff with a frustration timeout (FTO) [32]: a
download is aborted if and only if its duration exceeds
the FTO, specified by a constant Tabort. Thus,

pabort ¼ Probðdownload time > TabortÞ: ð4Þ

This model is imperfect: it does not consider file size (a
user may be more patient when downloading a video clip),
nor distinguish between server and network delays. We
consider the FTO as a first-order approximation of abort
behavior. There are several more sophisticated models in
the literature that one can adopt for Tabort [6,10,41].

Note that we use FTO as a model for abort behavior only
for the simulation, for which Tabort is an input parameter to
the simulator. For the trace analysis (Section 4), T abort can
be directly measured; for the equilibrium analysis (Section
6), Tabort may have an arbitrary distribution.

5.2. Simulation scenario and parameters

We focus the simulations on how TCP affects the net-
work curve and use the simplest download model:

1 download ¼ 1 connection: ð5Þ

Like FTO, this simplification applies only to the simulation.
We use the standard dumbbell configuration with k

sources sending data to k destinations over a bottleneck
link. To maintain k concurrent connections, all sources
are in busy states all the time; in particular, whenever a
download completes or aborts, another starts immediately
for the same source/destination pair.

In reality, k varies with arrival rate (Fig. 6), and our
model does reflect this—see end of Sections 4.6 and 6. This
modeling technique (of fixing k in the simulation) is simi-
lar to the use of flow-equivalent servers in queuing net-
work analysis [23].

We restrict the simulations to small values of k, as NS2
becomes very slow when the number of sources is large. It
 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250

C
on

ne
ct

io
n

C
om

pl
et

io
n

R
at

e

Number of Simultaneous Connections

Bandwidth 1.0 Mbps
Bandwidth 2.0 Mbps

 0

 5

 10

 15

 20

 25

 0 50 100

C
on

ne
ct

io
n

C
om

pl
et

io
n

R
at

e

Number of Simultane

Bottleneck BW=1Mbps,
Bottleneck BW=1Mbps,

Fig. 10. Default simulation parameters: 100 Mbps access links, a 50 ms bott
(frustration timeout). For the simulations, 1 download = 1 connection.

Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
follows that we have to set the bottleneck bandwidth to
unrealistically small values, but this is not an issue since
the bandwidth per connection b TCP is more important.

Unless otherwise stated, the bottleneck link has 50 ms
delay, access link speed is 100 Mbps, each download trans-
fers thirty 536-byte packets, and FTO is 20 s.

5.3. Simulated network curve

As k is a simulation parameter, the network curve is a
straightforward plot of completed download rate against
k. Fig. 10a shows the simulated network curves for two
bottleneck bandwidths.

The simulated network curves are similar in shape to
Fig. 9b, except that the trace version does not show clearly
what the tail on the right looks like. This is because the tail
is where congestion is heavy (large k), so it is hard to ob-
serve in a real network that is well-provisioned. The simu-
lation thus shows us a part of the network curve that is
crucial but hard to observe with a trace.

Note the shift in network curve when bottleneck band-
width is changed from 1 Mbps to 2 Mbps. Again, observing
such a shift through a trace is difficult. (Section 6 discusses
this shift.)

5.4. Plotting user curve without simulating sessions

We could implement the session model and user back-
off in NS2, and generate the user curve with simulations—
this is our current work. For this paper, our simulation is
focused on the network curve.

Although the experiments do not simulate users, one
can plot the user curve, as follows: From the trace mea-
surements, do a linear regression fit for pnext and set
pretry ¼ 0:93 (see Fig. 7), and use pabort measured from the
network curve simulation; substituting these values into
Eq. (1), we get the user curves in Fig. 10b for two session
arrival rates. Note the similarity in shape to the trace ver-
sion in Fig. 9a, and the shift when rsession is changed.

5.5. Traffic equilibrium where the curves intersect

Fig. 10c shows how a pair of user and network curves
intersect to determine the traffic equilibrium. We will ana-
lyze this equilibrium in Section 6.
 150 200 250

ous Connections

 session rate=0.5
 session rate=0.3

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250

C
on

ne
ct

io
n

C
om

pl
et

io
n

R
at

e

Number of Simultaneous Connections

1Mbps session rate=0.3 | Demand
1Mbps | Supply

leneck link delay, thirty 536-byte packets per transfer and a 20-s FTO

nalysis through separation of user and network behavior,

Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx 9

ARTICLE IN PRESS
5.6. Using the PFTK equation for bTCP

Recall that bTCP in Eq. (2) is the download bandwidth
provided by TCP. With the download simplification (5)
for the simulation, there are several equations in the liter-
ature describing TCP throughput that are candidates for
bTCP. One of the earliest was by Padhye et al. [33] for TCP
Reno.

The PFTK equation expresses TCP throughput TðpÞ as a
function of p, the probability of a loss indication. The equa-
tion was derived without including slow start, making it
inaccurate when congestion is low, window size grows
large and slow start dominates. To get around this issue,
we simulated a lossy bottleneck link that dropped 10% of
the packets; this reduces the window size and the effect
of slow start.

We then compare the simulated rout and the calculated
version (2) using bTCP ¼ TðpÞ, with p and p abort measured
from the simulation. Fig. 11 shows excellent agreement.

The PFTK equation has other shortcomings, but our
point here is just to show that one can refine Eq. (2) further
by substituting an appropriate formula for bTCP.

5.7. Congestion control, queue management and rout

With our surfing session model, user reacts to conges-
tion through pabort, pnext and pretry. The network, however,
reacts through TCP’s congestion control. To study how con-
gestion control affects the network curve, we simulated
three versions of TCP: Reno, Tahoe and the original TCP—
RFC793 [34]. Fig. 12 compares their network curves.
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140 160 180

C
on

ne
ct

io
n

C
om

pl
et

io
n

R
at

e

Number of Simultaneous Connections

Simulation Result
Supply Equation

Fig. 11. Substituting the PFTK equation for bTCP in Eq. (2) gives a good fit
for the measured network curve.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
on

ne
ct

io
n

C
om

pl
et

io
n

R
at

e

Number of Simultaneous Connections

RFC793
1-way Tahoe
1-way Reno

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 0 2 4 6 8 1

C
on

ne
ct

io
n

C
om

pl
et

io
n

R
at

e

Number of Simultan

1-w
1-

Fig. 12. The network curve with/without congestio

Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
Without congestion control, RFC793 is more aggressive,
so it is no surprise that its linear segment is higher for
small k. The three versions have similar tails in Fig. 12a,
where the average download size is 200 packets. When
this is increased to 400 packets, Fig. 12(b) shows that
RFC793 has a clearly higher tail. This is counter-intui-
tive—one expects RFC793 to suffer when congestion is high
(i.e. large k), rather than provide a higher goodput.

This happens because RFC793 is unfair: With download
size increased to 400 packets, fewer connections complete
before the FTO (=30 s), so the tails drop in Fig. 12b. As Ta-
hoe and Reno are fairer, their connections have similar
download times, so when pushed beyond the FTO by an in-
creased k, they suffer a sudden increase in pabort and a sharp
drop in rout.

In contrast, RFC793 allows some connections to hog
bandwidth while others stall. This bigger spread of band-
width allocation means there are more fast connections
that can complete before the FTO, so RFC793’s tail drops
gradually. One expects this ‘‘advantage” would be lost if
the router enforces fairness.

Indeed, Fig. 12c shows that, when the default manage-
ment policy (droptail) is changed to RED (random early
detection), which has fairer bandwidth allocation,
RFC793’s tail drops below those of Tahoe and Reno.

In general, the shape of rout is affected by any factor that
influences TCP throughput. For example, our experiments
(omitted here for lack of space) show that a large maxi-
mum window size separates the tails for Tahoe and Reno,
and a heavy-tailed download size distribution adds jitter
to the curve.

6. Equilibrium analysis via user–network model

Having validated the models by measurement and
studied the network curve by simulation (Sections 4 and
5), we now return to the models (Sections 2 and 3) for
an abstract analysis. Recall that our objective is to offer
a technique for analyzing traffic equilibrium that (i) takes
into account the interaction between user and network
behavior, (ii) is intuitive and (iii) can flexibly address a
broad range of issues. We now illustrate how the two
models can realize these goals by examining the location,
stability, robustness and dynamics of the equilibrium. To
do so, we need to first understand the shape of the user
and network curves.
0 12 14 16 18 20

eous Connections

RFC793
ay Tahoe
way Reno

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0 5 10 15 20 25

C
on

ne
ct

io
n

C
om

pl
et

io
n

R
at

e

Number of Simultaneous Connections

RFC793
1-way Tahoe
1-way Reno

n control, for drop-tail and RED (FTO = 30 s).

nalysis through separation of user and network behavior,

rout

r in

routr in r in rout

routr in
k

stable equilibrium

unstable equilibrium

k 00 k’

>

<

>

Fig. 13. Equilibrium at k0 is stable; the one at k00 is unstable.

10 Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx

ARTICLE IN PRESS
6.1. The shape of user curve rin

We can rewrite the user curve formula (1) as

rin ¼
rsession

ð1� pnextÞ þ
1�pretry

1
pabort

�1

:

When congestion is low, pabort � 0 and

rin �
rsession

1� pnext
� c1rsession for small k; ð6Þ

where c1 is the number of completed downloads per ses-
sion for k ¼ 1. When k increases, the decrease in band-
width per user and increase in delay cause users to
backoff: pabort increases, while pnext and pretry decrease,
causing r in to decrease. (Note that goodput only measures
completed downloads; the total download rate—including
aborts—may increase with k.)

Thus, the user curve starts on the left at height c1rsession
,

then drops as k increases. This explains the shapes in Figs.
9a and 10b. When session arrival rate rsession fluctuates over
a macro timescale, its scaling effect on rin shifts the user
curve, like in Fig. 10b.

6.2. The shape of network curve rout

Now consider the network curve

rout ¼
k

pabort
1�pabort

Tabort þ
Scompleted

bTCP

:

When k is small and congestion is negligible, the download
bandwidth is mostly constrained by receiver window size
and access link bandwidth, so bTCP does not change with
k. Moreover, p abort � 0 if users seldom abort when conges-
tion is low. Hence,

rout �
kbTCP

Scompleted
grows linearly with k; for small k:

As k increases, the total throughput approaches the bot-
tleneck capacity, so rout flattens out. Any further increase in
k will translate into longer queues, slower response and
dropped packets. If users notice and backoff, Uabort

backoff in-
creases pabort. This and the decrease in bTCP result in a drop
in rout. We thus get the shapes in Figs. 9b and 10a.

For large k, some bandwidth is lost to retransmissions,
but the drop in rout is mostly caused by aborted downloads.

An increase in bottleneck bandwidth will shift most of
rout, like in Fig. 10a, except for the initial linear segment,
where the bandwidth increase has a small effect on bTCP.

Note that link capacity, queue management, router con-
figuration, etc. affect the shape of rout through bTCP—this in-
cludes the micro timescale congestion effects (packet
drops, window size adjustment, etc.). One can analyze
their impact mathematically by substituting the appropri-
ate formula for bTCP into Eq. (2), like we did for Fig. 11.

6.3. Stability of the equilibrium

The user and network curves may intersect at multiple
points, but the equilibrium at these intersections may
Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
differ in stability. To see this, we adapt Kleinrock and Lam’s
fluid argument [26].

Fig. 13 shows an rin � rout pair that intersect at k ¼ k0

and k ¼ k00. Now consider a small e > 0. At k ¼ k0 � e,
rin > rout; by Fig. 4, k increases and moves towards k0.

Similarly, at k ¼ k0 þ e, we have rin < rout, so k decreases
and again moves towards k0. Thus, k hovers around a stable
equilibrium as rin and rout shift over a macro timescale (as
session arrivals, protocol mix, etc. change).

The same argument shows that k is decreasing at
k ¼ k00 � e, and increasing at k ¼ k00 þ e, in Fig. 13. There-
fore, any perturbation to k will cause it to move away from
that equilibrium; i.e. the equilibrium at k00 is unstable.

There may be stable equilibrium points for larger
kð> k00Þ, but the goodput may be so low that performance
has collapsed.

This stability analysis agrees with Garetto et al.’s results
[18]. They have identified an unstable region for TCP; if the
traffic equilibrium is close to this region, a random traffic
fluctuation can push the system into that region, causing
a big and sudden increase in the number of active
connections.

Their observations can be interpreted with Fig. 13: k00
marks the start of an unstable region; if the traffic equilib-
rium is at k0, and k0 is close to k00, then a fluctuation can
push k beyond k00, causing k to slip further out to the next
stable equilibrium at some k000.

Users may react to the degraded equilibrium by backing
off, but new sessions continue to arrive. This stable equilib-
rium at k000 must wait for a macro timescale change in traf-
fic, e.g. a drop in rsession after midnight [6,18]. The user
curve then shifts left, causing the stable equilibrium at k000
to drift towards the unstable equilibrium at k00; once there
ðk000 ¼ k00Þ, the momentum then drives k down further, and
the link returns to a stable equilibrium at k0 with a high
goodput.

We see here how, by treating the equilibrium as a bal-
ance between user and network behavior, we can break
the user–TCP feedback cycle in reasoning about the equilib-
rium, and get a deeper understanding of traffic dynamics.

6.4. Congestion buildup and decay

Hohn et al. have observed in their router measurements
[21] that a busy period is asymmetrical: the buildup in
nalysis through separation of user and network behavior,

decay
fast
build−up

slow

time

queuing delay
sessionr sessionr

inr outr inr outr

k

k

k

big gap;
rapid increase in kincreases decreases

small gap;
slow decrease in

kk 21

 > <

Fig. 14. The decreasing gap between user curves results in asymmetrical forces that underly the buildup and decay in (a).

Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx 11

ARTICLE IN PRESS
queuing delay is faster than its decay. This is illustrated in
Fig. 14a.

The asymmetry observed by Hohn et al. happens over a
micro timescale (milliseconds), but it appears over a macro
timescale as well: Iyer et al.’s measurements show that,
even in the backbone, some links suffer sudden overloads
(caused by, say, traffic redirected by link failures) that
can persist for hours [22].

Such asymmetry is common in queuing systems, but
amplified by user behavior in the following way: Suppose
the equilibrium is at k ¼ k1 in Fig. 14b, and there is an in-
crease in r session from k1 to k2, causing the user curve to
shift up. Now, rin exceeds rout and k increases.

After a new equilibrium is reached at k ¼ k2 in Fig. 14c,
suppose rsession returns to k1, and the user curve drops, so
rout exceeds rin and k decreases.

From Eq. (3), the gap between the user curves is
ncomp=sessionðk2 � k1Þ. Since ncomp=session is a decreasing func-
tion of k, the gap at k1 is larger than the one at k2, so the
imbalance that drives k up in Fig. 14b is greater than the
imbalance that drives k down in Fig. 14c. The rise and fall
in congestion are thus driven by asymmetrical forces.

Again, the user–network decomposition offers us in-
sight into traffic dynamics and answers, in part, question
Q4 about the impact of a load change. The next two subsec-
tions will consider the stability aspect to Q4.

6.5. Internet robustness: the role of user behavior

The persistent overload measured by Iyer et al. is also
observed in simulations by Prasad and Dovrolis, who point
out that TCP congestion control cannot curtail this persis-
tence in an open system [35]. Worse, TCP cannot prevent
se
ss

io
n

r

k

no user backoff

in
cr

ea
se

s

Fig. 15. How the shape of the user curve affects robustness: (a) Without use
equilibrium. (b) With user backoff, equilibrium can be maintained for a larger ra

Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
a loss of equilibrium by itself, as we now show with our
model.

To see the complementary role played by user behavior,
consider first the case where users do not backoff, so
pabort; pnext and pretry in the surfing session model are con-
stants, and rin remains the same whatever the congestion
level k may be. (Note that congestion slows down web ret-
rievals and reduces the click rate per user, but users stay
longer in the system, so the total click rate remains
constant.)

Hence, if an increase in rsession is sufficiently large, the
user curve will rise above the network curve, like in
Fig. 15a. With the two curves disengaged, no equilibrium
is possible and performance plummets: link buffers over-
flow, TCP timers go off, retransmissions dominate, etc.,
and recovery must wait for existing users to quit and for
rsession to drop.

On the other hand, if users do backoff, then the user
curve is decreasing. Although the network curve is also de-
pressed by pabort, equilibrium is possible for a higher range
of rsession, as illustrated in Fig. 15b.

User backoff thus acts as a form of congestion control.
As Bonald and Roberts noted: In an overload, network sta-
bility is in fact maintained by user impatience [6].

User backoff plays this stabilizing role for UDP applica-
tions too: Bu et al. did a detailed study of aborted VoIP calls
when perceived quality is degraded by congestion, and
concluded that user backoff will prevent such UDP applica-
tions from bringing down the Internet [7].

So, one answer to Q2 is that user backoff helps perfor-
mance. However, it also hurts because abortion forces
down the network curve’s tail. We next see how this can
lead to a performance collapse.
se
ss

io
n

r

k

in
cr

ea
se

s with user backoff

r backoff, a sufficiently large increase in rsession will result in a loss of
nge of rsession. Recall (6) that user curves start on the left at height c1rsession.

nalysis through separation of user and network behavior,

12 Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx

ARTICLE IN PRESS
6.6. Internet robustness: the role of TCP

Notice from Fig. 12 that different TCP versions make
only marginal differences to the linear segment and height
of the network curves—the big differences are in the tail.
This is intuitive, since these TCP versions differ in their
congestion control, so their differences show up only for
large k.

On the other hand, the tail of a performance curve,
being lower than its height, is usually considered a sub-
optimal operating range that is to be avoided. Much engi-
neering wisdom and technical analysis have gone into
designing TCP variations, yet it appears now from the net-
work curve that this effort is focused on a sub-optimal re-
gion. This brings us back to Q5: What is TCP’s role in
determining the equilibrium?

The motivation in the TCP variations is varied (fairness,
latency, etc.). We now interpret the variations in terms of
robustness.

As Fig. 12c shows, modifications to RFC793 can lift the
tail of the network curve. If the tail drops rapidly, then a
sudden upward shift of the user curve (e.g. flash crowd
or traffic failover) can drive the equilibrium point deep
down the tail, as illustrated in Fig. 16a, resulting in a per-
formance collapse.

To be robust, a TCP version must hold the tail as high as
possible, and for k as large as possible, so that—even if the
user curve suddenly shifts up — the equilibrium will stay
high, like in Fig. 16b, and there is no performance collapse.

Since the drop in the tail is largely caused by abortion,
lifting the tail would require changes to TCP that take user
behavior into account, as demonstrated by Yang and de
Veciana’s TCP SAReno [42]. Instead of fair sharing, SAReno
uses residual transfer size to modulate the congestion win-
dow (using, essentially, the queuing discipline called
Shortest-Remaining-Processing-Time-First [38]). The effect
is to reduce user-perceived delays and decrease abortion.
Indeed, their simulation shows that SAReno lifts up the
goodput tail for an overloaded link.

We see here how micro timescale congestion control
shapes the network curve, and thus affect the medium
timescale equilibrium.

6.7. A primal–dual formulation of user–network interaction

Besides the above user–network view of SAReno’s im-
pact on equilibrium, there is another perspective. Kelly
r se
ss

io
n

r

k

in
cr

ea
se

s

Fig. 16. How the tail of the network curve affects robustness: (a) If the tail dro
performance collapse. (b) If the tail drops gradually, high performance can be m

Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
and Low et al. view traffic equilibrium as the result of a pri-
mal–dual optimization [24,28]. For example, the primal
variable is sending rate controlled by TCP, as ‘‘user”, while
the dual variable is a congestion signal (e.g. packet drop
probability or delay) controlled by active queue manage-
ment (AQM), and the utility to be maximized depends on
the TCP/AQM pair. In our user–network model, TCP is not
the ‘‘user”, but part of the network.

Low and Lapsley have used Lagrange duality to show
that TCP/AQM maximizes transport utility. One can simi-
larly use a primal–dual formulation of user–network
decomposition to interpret user backoff as utility maximi-
zation, with Uabort

backoff and U session
backoff as the ‘‘primal algorithm”

and the TCP/AQM pair as the dual algorithm.
To illustrate, assume pabort ¼ 0 and consider just U session

backoff .
Let rclick be the primal variable, tcompleted the dual variable
that is the download time (Section 3.3) serving as a conges-
tion signal, U the utility function and C the bottleneck
capacity. Then the optimization problem is

max UðrclickÞ such that Scompletedrclick 6 C:

By Usession
backoff , suppose pnext ¼ gðtcompletedÞ for some decreasing

function g. One can determine g by, say, assuming pnext is
a linear function of k (see Fig. 7) and k ¼ Ctcompleted=

Scompleted. By the Karush–Kuhn–Tucker Theorem, the opti-
mal solution has

U0ðrclickÞ ¼ Scompletedtcompleted ¼ Scompletedg�1ðpnextÞ:
With pabort ¼ 0, Eq. (1) gives

UðrclickÞ ¼
Z

Scompletedg�1 1� rsession

rclick

� �
drclick:

In this fashion, one can discover the utility function under-
lying user behavior in Fig. 7.

One could, like Low et al., go further and use the primal-
dual formulation to design TCP/AQM algorithms that take
user backoff into account, and compare the result to
SAReno.

6.8. Bandwidth provisioning

We have illustrated how the simulated user and net-
work curves can move individually. In reality, both may
move together, and this affects bandwidth provisioning.

As Fig. 10a shows, an increase in bottleneck bandwidth
raises the network curve. Surfers will react to the change in
bandwidth by changing (for the same k) pabort; pnext and
pretry, thus raising the user curve as well. It follows that
se
ss

io
n

k

in
cr

ea
se

s

ps steeply, a sufficiently large upward shift in user curve can result in a
aintained for a larger range of rsession.

nalysis through separation of user and network behavior,

k

E

F

G

small difference

big difference
before bandwidth increase
after bandwidth increase

Fig. 17. An increase in bottleneck bandwidth raises both the user and
network curves. Consequently, the equilibrium point E does not slide
along the old user curve to another point F, but jumps to point G on
another user curve.

Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx 13

ARTICLE IN PRESS
the equilibrium point does not just slide along the old user
curve, but jumps onto another curve altogether, as illus-
trated in Fig. 17.

We can also see from this figure a problem with engi-
neering arguments like the one in the user–TCP feedback
cycle: they do not distinguish between a movement along
a user curve (e.g. from E to F) and a movement of the curve
itself.

Bandwidth provisioning thus requires not just an
understanding of the shape of the user curve, but also
how the entire curve moves with network changes.
Whether increased bandwidth relieves congestion (Q3)
thus depends on how the user and network curves behave.

Alternatively, one can reformulate the model so that the
user curve does not change when bottleneck bandwidth is
changed. This is possible if users perceive congestion
through its effect on bTCP. One can then redo Fig. 7 and plot
pabort; pnext and pretry as functions of bTCP (instead of k). The
user curve can then be plotted against bTCP, and this curve
does not change with bottleneck bandwidth. For a pro-
posed bottleneck bandwidth, one can estimate k as a func-
tion of b TCP, and use Eq. (2) to plot the corresponding
network curve and determine the new equilibrium. This
goodput-vs-bTCP formulation of the user–network model
may be more suitable for bandwidth provisioning.

6.9. Watching for an overload

Fredj et al. have cautioned that, with bandwidth provi-
sioning, precise guarantees are in vain because random
fluctuation can overwhelm deterministic design [17]. In
our context, consider Fig. 13. For such an rin-rout pair, Klein-
rock and Lam point out that the equilibrium cannot stay
around k0 indefinitely—with probability 1, a random fluc-
tuation will cause the number of concurrent downloads
to cross the critical point k00 in finite time T 00, say, resulting
in a stable, collapsed equilibrium further out. If T 00 is large,
rsession may drop first, making the collapse unobservable. In
any case, one can pre-empt a collapse by keeping the equi-
librium where drout

dk > 0; the following is a guide:
Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
Proposition 1. Suppose the averages Tabort and Scompleted are
constant.

(a) If k
pabort

dpabort
dk 6 1� pabort and k

bTCP

dbTCP
dk P �1, then

drout
dk > 0.

(b) If k
pabort

dpabort
dk > 1� pabort and k

bTCP

dbTCP
dk < �1, then

drout
dk < 0.

An Internet service provider can use a tool like SAX
(Section 4) to monitor k

pabort

dpabort
dk and k

bTCP

dbTCP
dk . If they violate

one of the inequalities in Proposition 1(a), then the equilib-
rium is approaching overload.

If they satisfy both inequalities in Proposition 1(b), then
not only is the equilibrium in danger of collapse, but there
is already bandwidth wastage from abortion. Clearly, the
equilibrium is in an undesirable operating zone, and the
provider may need to take action (e.g. admission control
or traffic diversion [22]) to lower congestion to where
the inequalities in Proposition 1(a) are true again.

This paper focuses on providing a technique for intui-
tive analysis of the equilibrium. Nonetheless, Proposition
1 shows how the underlying closed-form expressions can
facilitate a formal, technical analysis.

7. Model variations

The models in Sections 2 and 3 make two important
assumptions: (i) users react to congestion and (ii) rsession

is independent of congestion level. This section relaxes
these assumptions, thus further demonstrating our mod-
els’ flexibility.

7.1. Non-reactive elephantine flows

We now address the question Q1 on how elephantine
transfers affect the equilibrium.

Users react to congestion only if they are monitoring
the progress of a download, which may not be the case—
a user may start downloading a large file over a modem
link, then go for dinner or to bed. Only a small fraction of
Internet connections carry such large flows, but they dom-
inate in terms of byte count [37]. These large downloads
can last for a long time, so with only TCP congestion con-
trol and no user backoff to regulate them, intuition says
that they can cause a performance collapse for reactive
users. How can our model capture this intuition?

To do so, we add a class of downloads that arrive at rate
r long. (A peer-to-peer application may spawn multiple
connections to download fragments of a large file, but our
models already allow a download to include multiple TCP
connections.) Assume each download has average size
Slong, and does not abort—regardless of congestion—as illus-
trated in Fig. 18a. The user and network curves become

rin ¼
rsession

1� pnext þ
1�pretry

1
pabort

�1

þ rlong; ð7Þ

rout ¼
k� rlong

Slong
bTCP

pabort
1�pabort

Tabort þ
S completed

bTCP

þ rlong: ð8Þ
nalysis through separation of user and network behavior,

sessionr

clickr

p
abort

p
abort

p
next

p
abort

pretry p
abort

r long

wait−longwait−abort

(1−)
click

(1−)

r

rr

r

click click

click

wait−complete

think

k

without persistent large flows
with persistent large flows

Fig. 18. (a) Non-reactive large flows are modeled by adding a class to Fig. 3. Requests in this class arrive at a rate r long, the average size of each download is
Slong, and they do not abort. (b) Although non-reactive large flows may form a small percentage of TCP connections (so their effect on the user curve is
small), they can significantly lower the network curve, possibly causing a performance collapse (despite TCP congestion control).

14 Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx

ARTICLE IN PRESS
As large flows form a small fraction of Internet
connections, we have rlong � rsession. Moreover, without
1� p retry;1� pnext and pabort to magnify its contribution,
rlong makes a negligible difference to r in, as illustrated in
Fig. 18b.

The impact on rout, however, is significant. Comparing
Eqs. (8) and (2), we see that (for the same value of k) rout

has an additional term rlong and a reduced term for the
user-responsive flows. In effect, the persistent large flows
reduce the bandwidth available to the others by occupying
rlongSlong=bTCP of the k downloads. (Indeed, Saroiu et al.’s
measurements show that peer-to-peer downloads take
up some two-thirds of concurrent HTTP flows [37].)

The elephantine flows thus push down the network
curve, like in Fig. 18b. This push can separate the user
and network curves, cause a loss of equilibrium and induce
a performance collapse. This can happen even if the large
flows are using TCP congestion control, so the conclusion
also applies even if the applications use TCP-friendly UDP
flows.

7.2. Surfing session model: closed system

So far, we have focused on an open model, in which ses-
sions arrive at a constant rate rsession (regardless of conges-
tion). However, it may sometimes be more relevant to
sessionr

clickr

p
abort

p
abort

p
next

p
abort

pretry p
abort

pretry p
abort

p
next

p
abort

wait−abort

out

(1−)
click

(1−)

r

rr

r

r

click click

click

sleep
(1−) (1−) (1−)

click clickrr

wait−complete

think

Fig. 19. (a) Changing Fig. 3 into a closed model by adding a sleep state for users w
number of users who are viewing their downloads), resulting in a local increase

Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
consider a closed model, in which there is a constant num-
ber of users. For example, an Internet service provider may
have a small customer population. Then, rsession depends on
how many of them are already active.

To model such a system, we close the loops in Fig. 3 by
introducing a sleep state for inactive users who are not in
download-cum-think sessions, as shown in Fig. 19a.

Let Tsleep and Tthink be the average time a user spends
in the sleep and think states, respectively, and suppose
the user population has size Nuser. Then, the user curve
becomes

rin ¼
Nuser � k� kTthink

pabort
1�pabort

Tabortþ
Scompleted

bTCP

Tsleep 1� pnext þ
1�pretry

1
pabort

�1

� � ð9Þ

The network curve is unaffected.
Fig. 19b illustrates the new rin equation. It shows that,

while congestion is light, rin behaves like in the open mod-
el, decreasing as k increases. However, when congestion
becomes serious and pabort approaches 1, the number of
users in think state ðkthinkÞ drops. By Eq. (9), this can cause
a local increase in rin. However, this non-monotonicity
does not affect the equilibrium and stability analysis in
Section 6.
r in
rout

k

.

ho are not in a session. (b) Heavy congestion can cause a drop in kthink (the
for rin in Eq. (9).

nalysis through separation of user and network behavior,

Y.C. Tay et al. / Computer Networks xxx (2008) xxx–xxx 15

ARTICLE IN PRESS
Prasad and Dovrolis point out that closed-loop traffic is
always stable and cannot cause an overload. This is true if
users do not abort, so the rout tail is high like in Fig. 16b.
Otherwise, abortions will force down the tail, and a perfor-
mance collapse in a closed system becomes possible, like in
Fig. 16a for an open system.

8. Conclusion

The Internet’s complexity offers tremendous scope for
the application of sophisticated techniques (game theory,
mathematical programming, stochastic processes, etc.) to
equilibrium analysis, but the resulting models are not easy
to understand or use. In contrast, our objective here is to
offer a simple, accessible model that engineers and
researchers can use routinely to cut through the complexity
and formulate back-of-an-envelope arguments about traf-
fic equilibrium.

(Indeed, our user–network model is inspired by a simi-
lar separation in economics—despite market complexities,
the demand-supply decomposition of price equilibrium is
a simple, yet powerful and enduring paradigm in economic
discourse.)

We have made equilibrium analysis easy by

(i) separating user and network behavior and
(ii) describing them with closed-form expressions.

We capitalize on the robustness of Little’s Law to over-
come the difficulty in modeling multi-link bottlenecks
(Section 3.3).

We also incorporate—in one model—factors from the
entire timescale: While focusing on user–network interac-
tion at medium granularity, the equations factor in micro-
granularity TCP/AQM characteristics through bTCP (Figs. 12
and 16) in the network curve (2), as well as macro-granu-
larity population characteristics through rsession (Figs. 14,
15, 18, 19) in the user curve (1). We refined the model in
Section 7.2 to study how a macro-granularity effect on
rsession affects the equilibrium, and one can similarly exam-
ine how micro-granularity TCP/AQM issues affect bTCP and,
consequently, the equilibrium.

The user–network separation is natural, once we ob-
serve the equilibrium as a balance between input flow rin

and output flow r out. For example, we see now that a flash
crowd affects the equilibrium by moving the user curve,
while a router misconfiguration’s effect is in warping the
network curve. The separation is also necessary, if we are
not to confuse behavioral change that is a slide along one
curve (arising from a change in k) with a change brought
by a shift in the curve.

The fluid approximation is also essential to deriving the
formulas, since it glosses over details like TCP window
adjustment and abort time distribution. Instead, we only
work with averages (bTCP, Tabort, etc.), as is often done in
performance analysis [28,33]. These averages hide the
Internet complexity, and provide simple closed-form
expressions that make analysis tractable.

Prop. 1 (Section 6.9) illustrates how we can, starting
from the equations here, mathematically elaborate on the
Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
informal analysis above. However, one should not lose
sight of the accessibility objective.

We do not claim to have completely addressed the large
issues mentioned in this paper (Q1–Q5, TCP modification,
traffic monitoring, etc.), but we have demonstrated the
technique’s range and flexibility (Sections 6 and 7) by
touching on these disparate issues, and by relating it to
many results in the literature.

Acknowledgements

Jaeyeon Jung and Alex Yip did preliminary measure-
ments that suggested evidence of user backoff; Yuan Li ini-
tiated the measurements and simulations reported here;
Vidit Maheshwari illustrated the primal–dual formulation
in Section 6.7, Arthur Berger, A. Kevin Tang, Chee-Wei
Tan and the reviewers of the various incarnations of this
paper gave many helpful comments—we thank them all.
This work was supported in part by National University
of Singapore under ARF Grant R-146-000-051-112.
References

[1] H. Abrahamsson, B. Ahlgren, Using empirical distributions to
characterize web client traffic and to generate synthetic traffic, in:
GLOBECOM, vol. 1, November 2000, pp. 428–433.

[2] A. Akella, S. Seshan, R. Karp, S. Shenker, C. Papadimitriou, Selfish
behavior and stability of the internet: a game-theoretic analysis of
TCP, in: SIGCOMM, 2002, pp. 117–130.

[3] E.J. Anderson, T.E. Anderson, On the stability of adaptive routing
in the presence of congestion control, in: INFOCOM, 2003, pp. 948–
958.

[4] M.F. Arlitt, C.L. Williamson, Internet web servers: workload
characterization and performance implications, IEEE/ACM
Transactions on Networking 5 (5) (1997) 631–645.

[5] P. Barford, M. Crovella, Generating representative web workloads for
network and server performance evaluation, in: SIGMETRICS, 1998,
pp. 151–160.

[6] T. Bonald, J.W. Roberts, Congestion at flow level and the impact of
user behavior, Computer Networks 42 (2003) 521–536.

[7] T. Bu, Y. Liu, D.F. Towsley, On the TCP-friendliness of VoIP traffic, in:
INFOCOM, 2006.

[8] T. Bu, D. Towsley, Fixed point approximations for TCP behavior in an
AQM network, in: SIGMETRICS, 2001, pp. 216–225.

[9] E. Casilari, A. Reyes-Lecuona, F.J. González, A. Diaz-Estrella, F.
Sandoval, Characterization of web traffic, in: GLOBECOM, 2001, pp.
1862–1866.

[10] C.S. Chang, Z. Liu, A bandwidth sharing theory for a large number of
HTTP-like connections, IEEE/ACM Transactions on Networking 12 (5)
(2004) 952–962.

[11] K.K. Cheng, K.T. Ko, S.W.C. Suen, Optimization of telephone networks
in developing nations with example, in: TENCON, 1990, pp. 371–
375.

[12] H.K. Choi, J.O. Limb, A behavioral model of Web traffic, in: ICNP,
1999, pp. 327–334.

[13] M.E. Crovella, A. Bestavros, Self-similarity in World Wide Web:
evidence and possible causes, IEEE/ACM Transactions on Networking
5 (6) (1997) 835–846.

[14] A.C. Dalal, S. Jordan, Improving user-perceived performance at a
World Wide Web server, in: GLOBECOM, 2001, pp. 2465–2469.

[15] A. Feldmann, BLT: bi-layer tracing of HTTP and TCP/IP, Computer
Networks 33 (1–6) (2000) 321–335.

[16] S. Floyd, K. Fall, Promoting the use of end-to-end congestion control
in the Internet, IEEE/ACM Transactions on Networking 7 (4) (1999)
458–472.

[17] S.B. Fredj, T. Bonald, A. Proutiere, G. Régnié, J.W. Roberts, Statistical
bandwidth sharing: a study of congestion at flow level, in:
SIGCOMM, 2001, pp. 111–122.

[18] M. Garetto, M. Ajmone Marsan, R. Lo Cigno, M. Meo, On the use of
fixed point approximations to study reliable protocols over
congested links, in: GLOBECOM, 2003, pp. 3133–3137.
nalysis through separation of user and network behavior,

16 Y.C. Tay et al. / Computer Netw

ARTICLE IN PRESS
[19] H.C. Gromoll, P. Robert, B. Zwart, R. Bakker, The impact of reneging in
processor sharing queues, in: SIGMETRICS/Performance, 2006, pp.
87–96.

[20] H. Hlavacs, G. Kotsis, Modeling user behavior: a layered approach,
in: MASCOTS, 1999, pp. 218–225.

[21] N. Hohn, D. Veitch, K. Papagiannaki, C. Diot, Bridging router
performance and queuing theory, in: SIGMETRICS, 2004, pp. 355–
366.

[22] S. Iyer, S. Bhattacharyya, N. Taft, C. Diot, An approach to alleviate link
overload as observed on an IP backbone, in: INFOCOM, 2003.

[23] R. Jain, The Art of Computer Systems Performance Analysis, John
Wiley, New York, NY, 1991.

[24] F. Kelly, Mathematical modelling of the Internet, in: B. Engquist, W.
Schmid (Eds.), Mathematics Unlimited – 2001 and Beyond, Springer-
Verlag, 2001, pp. 685–702.

[25] P.B. Key, L. Massoulié, M. Vojnovic, Farsighted users harness network
time-diversity, in: INFOCOM , 2005, pp. 2383–2394.

[26] L. Kleinrock, S.S. Lam, On stability of packet switching in a random
multi-access broadcast channel, in: Hawaii Interenation Conference
on System Sciences, 1976, pp. 74–77.

[27] K.C. Lan, J. Heidemann, Rapid model parameterization from traffic
measurements, ACM Transactions on Modeling and Computer
Simulation 12 (3) (2002) 201–229.

[28] S.H. Low, D.E. Lapsley, Optimization flow control, I: basic algorithm
and convergence, IEEE/ACM Transactions on Networking 7 (6)
(1999) 861–874.

[29] B.A. Mah, An empirical model of HTTP network traffic, in: INFOCOM,
vol. 2, 1997, pp. 592–600.

[30] S. McCanne, S. Floyd, NS Notes and Documentation, <http://
www.isi.edu/vint/nsnam/>.

[31] D.A. Menascé, V.A.F. Almeida, R. Fonseca, M.A. Mendes, A
methodology for workload characterization of e-commerce sites,
in: E-COMMERCE, 1999, pp. 119–128.

[32] D.P. Olshefski, J. Nieh, D. Agrawal, Inferring client response time at
the web server, in: SIGMETRICS, 2002, pp. 160–171.

[33] J. Padhye, V. Firoiu, D.F. Towsley, J.F. Kurose, Modeling TCP Reno
performance: a simple model and its empirical validation, IEEE/ACM
Transactions on Networking 8 (2) (2000) 133–145.

[34] J. Postel, Transmission Control Protocol, IETF, RFC 793, September
1981.

[35] R.S. Prasad, C. Dovrolis, Measuring the congestion responsiveness of
Internet traffic, in: PAM, 2007.

[36] D. Rossi, C. Casetti, M. Mellia, User patience and the Web: a hands-on
investigation, in: GLOBECOM vol. 22, 2003, pp. 4163–4168.

[37] S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, H. Levy, An analysis of
Internet content delivery systems, in: Usenix/ACM Symposium on
Operating Systems Design and Implementation, 2002, pp. 315–327.

[38] B. Schroeder, A. Wierman, M. Harchol-Balter, Closed versus open
system models: a cautionary tale, in: NSDI, 2006, pp. 239–252.

[39] D.N. Tran, W.T. Ooi, Y.C. Tay, SAX: a tool for studying congestion-
induced surfer behavior, in: PAM (<http://www.pam2006.org/
program.html/>), 2006.

[40] N. Vicari, S. Köhler, Measuring internet user traffic behavior
dependent on access speed, in: ITC Specialist Seminar on IP Traffic
Measurement, Modeling and Management, 2000.

[41] S. Yang, G. de Veciana, Bandwidth sharing: the role of user
impatience, in: GLOBECOM, 2001, pp. 2258–2262.

[42] S.J. Yang, G. de Veciana, Enhancing both network and user
performance for networks supporting best effort traffic, IEEE/ACM
Transactions on Networking 12 (2) (2004) 349–360.

Y.C. Tay received his B.Sc. degree from the
University of Singapore, and Ph.D. degree
from Harvard University. He has a joint
appointment with the Departments of Math-
ematics and Computer Science at NUS (http://
www.comp.nus.edu.sg/~tayyc). His main
research interest is performance modeling
(database transactions, wireless protocols,
cache misses, etc.). Other interests include
distributed protocols and their correctness
proofs.
Please cite this article in press as: Y.C. Tay et al., Equilibrium a
Comput.Netw. (2008), doi:10.1016/j.comnet.2008.09.008
Dinh Nguyen Tran received his B.Com-
p.(Hons) from School of Computing, National
University of Singapore in 2005. He is now a
graduate student at New York University.

orks xxx (2008) xxx–xxx
Eric Yi Liu obtained his B.Comp.(Hons) from
School of Computing, National University of
Singapore in 2005. He was a research assistant
in the NUS Department of Biological Sciences
before joining the University of North Carolina
at Chapel Hill as a graduate student in the
Department of Computer Science.
Wei Tsang Ooi received the B.Sc. degree from
the National University of Singapore and Ph.D.
degree from Cornell University, Ithaca, NY. He
is currently an Assistant Professor with the
NUS Department of Computer Science, where
he does research in multimedia systems, dis-
tributed systems and computer networking.
Robert Morris received the Ph.D. degree from
Harvard University, Cambridge, MA, for work
on modeling and controlling networks with
large numbers of competing connections.

He is currently an Associate Professor with
the Department of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology, Cambridge, and a Member of the
Computer Science and Artificial Intelligence
Laboratory. As a graduate student, he helped
design and build an ARPA-funded ATM switch
with per-circuit hop-by-hop flow control. He

led a mobile communication project which won a Best Student Paper
Award from USENIX. He cofounded Viaweb, an e-commerce hosting
service. His current interests include modular software-based routers,

analysis of the aggregate behavior of Internet traffic, and scalable ad-hoc
routing.
nalysis through separation of user and network behavior,

http://www.isi.edu/vint/nsnam/
http://www.isi.edu/vint/nsnam/
http://www.pam2006.org/program.html/
http://www.pam2006.org/program.html/
http://www.comp.nus.edu.sg/~tayyc
http://www.comp.nus.edu.sg/~tayyc

	Equilibrium analysis through separation of user and network behavior
	Introduction
	Congestion-induced user behavior in equilibrium analysis
	Current models and techniques
	Our contribution
	Overview of paper

	Surfing session model
	User-Network ModelUser–network model
	Defining network state: k concurrent downloads
	Deriving a user curve from the surfing model
	Deriving a network curve with Little’s Law

	Model validation with traffic trace
	SAX: surfer action extraction tool
	Measuring subnet state with k
	Verifying user behavior: , , {p}_{{\rm abort}}, {p}_{{\rm next}}, {p}_{{\rm retry}}
	Extracting the user curve from the tcpdump
	Extracting the network curve from the tcpdump
	Intersection of curves vs measured equilibrium
	Variation from, and changes in, the averages

	Simulation study using NS2
	FTO: Frustration frustration timeout {T}_{{\rm abort}}
	Simulation scenario and parameters
	Simulated network curve
	Plotting user curve without simulating sessions
	Traffic equilibrium where the curves intersect
	Using the PFTK equation for {b}_{{\rm TCP}}
	Congestion control, queue management and {r}_{{\rm out}}

	Equilibrium analysis via user-network user–network model
	The shape of user curve {r}_{{\rm in}}
	The shape of network curve {r}_{{\rm out}}
	Stability of the equilibrium
	Congestion build-up buildup and decay
	Internet robustness: the role of user behavior
	Internet robustness: the role of TCP
	A primal-dual primal–dual formulation of user-network user–network interaction
	Bandwidth provisioning
	Watching for an overload

	Model variations
	Non-reactive elephantine flows
	Surfing session model: closed system

	Conclusion
	AcknowledgementAcknowledgements
	References

