Final Review

Jinyang Li

Final logistics

* 100 minutes (half an hour longer than quiz1&?2)
— Cover all materials
— More emphasis on the second half of class (70%)

* Closed book

— except for one double-sided cheat sheet
— No electronic devices

* Read all questions, do the easier ones first.

Disclaimer: this review is not complete.
Not all exam materials are covered by this review!

What we’ve learnt (first half)

1. Clanguage
— pointers, bitwise operations
— Compilation, linking
2. Basic program execution
— Digital representation of numbers and characters

— CPU state vs. memory, basic x86 instructions
— Buffer overflow

What we’ve learnt (second half)

3. Dynamic Memory Allocation
4. Advanced program execution

— virtual memory
— caching

— Multi-processing
5. Multi-threading

Topic #1
C programming

Global vs. Local vs. Heap Variable

 Know the whereabouts of variables, when they are
allocated/deallocated

e Variables are not automatically initialized upon
declaration

void add(int x) {
X++;

}

void main() {
int x = 0;

add(x);
printf(“x is %d\n”, x); What's the output?

}
Answer: 0

Global vs. Local vs. Heap Variable

 Know the whereabouts of variables, when they are
allocated/deallocated

e Variables are not automatically initialized upon
declaration

int add(int x) {
X++;
return Xx;

}

void main() {

int x = 0;

x = add(x);

printf(“x is %d\n”, x);
} Answer: 1

What's the output?

Global vs. Local vs. Heap Variable

 Know the whereabouts of variables, when they are
allocated/deallocated

e Variables are not automatically initialized upon
declaration

int add(int x) {
X++;
return Xx;

}

void main() {

int x =0

x = add(x);

printf(“x is %d\n”, Xx);
} Answer: Could be any

number

What's the output?

Pointers

 Pointers are addresses to variables

* You must be aware of whether the variable
being pointed to has been allocated or not

and where

void add(int *x) {
(*x) = (*x) + 1;

}

void main() {
int y = 0;
int *x = &y; What's the output?
add(x);
printf(“x is %d\n”, *x); Answer: 1

Pointers

 Pointers are addresses to variables

* You must be aware of whether the variable

being pointed to has been allocated or not,
and where

void add(int *x) {
(*x) = (*x) + 1;

}

void main() {

e
int *x =gy What’s the output?
add(x);

} PRAREE(x 28 RdAnT,)i Answer: Likely

segmentation fault

1.2 CProgramming

e Pointers are ddresses to variables

* You must be aware of whether the variable
being pointed to has been allocated or not,

and where

int *

sum(int x, int y) {
int z = x + y;
return &z;

}

void main() { What's the output?
int *rl = sum(1l,1);
int *r2 = sum(*rl, 1);

printf (“%d\n”, *r2); Answer: |Ik€|y
} garbage

Pointers and arrays

* Arrays store a set of identically typed
elements contiguously

void main() {
int nums[5] = {1, 2, 3, 4, 5};
int *p;
p = nums + 2; //equivalentto p=&nums[2];
ptt;

printf (“%d\n”, *p);

What's the output?

Answer: 4

y[3]:
y[2]:
y[1]:

y[O]:

Little vs. Big Endian

void main() {

}

int x = 1<<31; //equivalentto x = 0x80000000;
char *y;
y = (char ¥*)&x;
for (int 1 = 0; 1 < 4; 1i++) {
printf(“sd “, y[i]);

}
0x80
0x00 _ What’s the output?
s
0x00 . Answer: 00 0 -128
. 0x00 3 (little Endian)

<€

C: Other Concepts

* ASCII characters
* Cstring
— Null-terminated ASCII character array
* Use malloc appropriately
— allocate the right size
— free allocated memory to avoid memory leak

Topic #2
Basic Program Execution

Basic Program Execution

CPU
ALU
(arithetic logic
unit)

Floating
point
unit

Addresses

Data

>

Instructions

GP Registers

PC

%rax, %rbyx,... %ripl

floating point
registers

Condition
Codes

Memory

Code
Data
Stack

Machine instructions: mov

1. mov instructions

movq <

Source

-

\

Imm =

Reg <

-

“—

-

Mem

“—

Dest

Reg
Mem

Reg
Mem

Reg

general memory addressing mode:
D(Rb, Ri, S): val(Rb) + S*val(Ri) +D

S:1,2,4 8
Source, Dest r & % OF

movqg $0x4,%rax

movqg $0x4, (%rax)

movq %rax,srdx

movq %rax, 16(%rbx, %rdx, 8)

movq (%rax),%rdx

Machine instructions

* Arithmetic operations
— add %eax, %ebx

— sub, mul

e The lea instruction
— lea Ox1(%rax, %rbx, 2), %rdx

* Bitwise-operations:
— shl/shr, sal/saq, and, or, xor

Control flow

 Normal control flow is linear
— load instruction stored at address %rip
— execute it
— %rip = %rip + (length of instruction)

* Non-linear Control flow

— combination of two types of instructions
* instructions that set conditional codes, CF, ZF, SF, OF

* jmp instructions that may or may not jump depending on
condition codes

— condition codes can be set
e implicitly: add, sub ..
» explicitly: cmp, test, ...

Procedure execution

e call, ret

* push, pop
— %rsp

e Ccalling convention
— first 6 arguments in

(

Caller
Frame <

%rdi, %rsi, %rdx, %rcx,

%r8, %ro

— return value: %rax
— caller vs. callee save

registers

Stack pointer

Srsp—m—

IArguments
7+

Return Addr

aved
Registers
+

ll_/ocal
ariables

rgument
Build

Optional)

larger addresses

smaller addresses

Buffer Overflow

Before call to gets

Stack Frame
forcall echo

Return Address
(8 bytes)

20 bytes unused

{

void echo ()

char buf[4d];

buf € %rsp

gets (buf) ;
puts (buf) ;
}
echo:
subg $24, %rsp
movqg %rsp, %srdi
call gets

Topic #3
Dynamic Memory Allocation

Dynamic memory allocation

* How to implement malloc/free?
* Goal: high throughput and high utilization
* Design questions:

— how to keep track of free blocks

— which free blocks to allocate?

— free is only given a pointer, how to know its block
size?

Dynamic memory allocation

* implicit list

— one (implicit) list containing all free and non-free
blocks

e explicit free list

— one explicit linked list containing all free blocks

e segregated free list
— multiple explicitly linked lists for free blocks,

— each links corresponds to a different size class

typedef struct {

_ unsigned long size and status;
chunk size| 0 head unsigned long padding;
8B paddin SA%ET 3} header;
2eleeli (16 bytes)
bool get status(header *h) {
Payload return h->size _and_status & Ox1L;
}
- size t get chunksize(header *h) {
chunks?e O | tooter return h->size and status& ~(Ox1L);
8B padding (16 bytes)

Question: given pointer p of type void * pointing to the payload,
how to get a pointer to the current, next, previous block?

curr = (header *)((char *) p — sizeof(header));

next = (header *)((char *)p + sizeof(header) + get_chunksize(curr));

footer = (header *)((char *)p — 2*sizeof(header));
prev = (header *)((char *)p — 3*sizeof(header)-get_chunksize(footer));

Topic #4
Advanced topics on program execution

VM, Caching, Multiprocessing

Virtual memory

e User program access virtual address
* 32-bit address =»address range [exeeeoeeee, oxffffffff]

Main memory

0:

CPU Chip 1:
Virtual address Physical address g

(VA) (PA))

CPU > MMU 7 > 4.
4100 5

A :
6:

7:

8:

M-1

Data word

VM: one-level page table
* Example:
— 8-bit virtual and physical addresses
— 16-byte page size

How many pages in the 8-bit address space?
Answer: 278/16 =274 = 16 pages

—

—page table is an array of PTEs.

How many PTEs needed to
address all pages in address space?

— Answer: 16 PTEs

VM: one-level page table

* Example:

— 8-bit virtual and physical addresses

— 16-byte page size

VA:
©x11010010
ptable[15]] (QxA1
What's the PA? ptable[14]; oxB1
Answer: page fault’ " €!t3/1 OxCO
VA: .
Ox11100010 Ptable2]: | O0xDO
What's the PA? ptable[1]: | OxF1
at's the FA: ptable[0]:| OXEO

Answer: OxB2

PTE is 1-byte size

PPN

L

validity bit

VM: Multi-level page table

* Example:

— 32-bit virtual and physical addresses

— 4KB page size
How many pages in the 32-bit
address space?

Answer: 2232/4KB =2/20 pages

0x12345001

0x85449001

0x87354440 0x22345000
0x87354001
0x674A0001

S—

PTE is 4-byte size

\)
—~ N\

20-bit PPN validity bit

how many PTEs
fit in one page?
Answer: 4KB/4 = 2710 PTEs

VM: Multi-level page table

* Example:
— 32-bit virtual and physical addresses

— 4KB page size VA:
\ J \ A
v Y !
10-bit index 10-bit index F1)§—glc(>eltoﬁse,c
to 1-level to 2-level
table node table node

0x12345001 ‘

0x85449001
0x87354440 0x22345000

how many PTEs
fit in one page?
Answer: 4KB/4 = 2710 PTEs

—

0x87354001
0x674A0001

VM: Multi-level page table

* Example:
— 32-bit virtual and physical addresses

— 4KB page size VA:
\ J \ A
v Y !
10-bit index 10-bit index F1)§—glc(>eltoﬁse,c
to 1-level to 2-level
table node table node

0x12345001 a

VA: 0x00401678
0x85449001 What is PA?

VA: 0x00001678
0x87354001 What is PA?

0x674A0001 Answer: page fault

Address space

* Each running

program has its own

page table and
address space

0x400000
0

User stack
(created at runtime)

'
T

Memory-mapped region for
shared libraries

T

Run-time heap
(created bymalloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

+«—3rsp
(stack
pointer)

Loaded
from

» the
executable
file

OS and user-level processes

* OS: a layer of software between app and h/w
— hide h/w details
— Manage resource sharing among apps

* H/w primitive: privileged vs. unprivileged
execution
— exception (e.g. page fault)
— traps (used for syscall)

— interrupt (e.g. timer interrupt)

invoking kernel functions: syscalls

* h/w instruction, syscall
— open, close, read, write
— futex, fork, clone
— man 2 fork

OS abstraction: Multi-processing

* Process: an instance of a running program

* Managed by OS, each process has
—its own virtual address space
—saved execution context
—process id

fork and exec

void main() {
printf("hello\n");
if (fork() == 0) {
printf("big\n");
exec(”/bin/echo”, *“world”);
printf(“lovely\n”);

}
}
printf("Bye\n");
}
 What are potential interleavings?
orint “bye” hello hello hello
print “hello” ——=>fork big big bye
bye world big

print “big” ——>exec “/bin/echo” “world \yorld bye world

forked processes have separate
address space

int global = 1;

void main() {
pid t pid = fork();
if (pid == 0) {

global = 2;
printf(“child global=%d\n”, global);
} else {

waitpid(pid,...)
printf (”parent global=%d\n”, global);

}
}

 What are possible outputs?

child global=2
parent global=1

Topic #5
Multi-threaded programming

Concurrent programming

* Asingle process can have multiple threads
— each thread has its own control flow & stack
— all threads share the same address space

* Multi-threaded programs need synchronization
* Synchronization problems:

— races
— deadlock

Races

* Examples:
— modifying shared counters
— modifying shared linked list, hash table etc.

* Caused by arbitrary interleaving of execution
among different threads

Thread-1 (x++) Thread-2 (x++)

read x (from

memory) into %eax
read x into %eax

add S1, %eax
add S1, %eax

write %eax to x (in memory)
write %eax to x

Races

node *head;
list insert(int x) {
Ll: node *n = malloc ...
L2: n->val = x;
L.3: n->next = head;
LL4: head =n;
}

what can go wrong if two threads insert at the same time?

Thread-1: list_insert(1) Thread-2: list_insert(2)
L1l Ll
L2 L2
L3
L3
L4

L4

Mutexes

 Protect “critical section”

Big lock implementation

int acc[100];

pthread mutex t mu;

void transfer(int x, int y){
pthread mutex lock(&mu);
acc[x] -=10;
accl[y] += 10;
pthread mutex unlock(&mu);

Fine-grained lock

typedef struct {
int balance;
pthread mutex t mu;
jaccount_ t;

account t acc[100];

void transfer(int x, int y) {
pthread mutex lock(&acc[x].mu);
pthread mutex lock(&acc[y].mu);
acc[x].bal -= 10;

accl[y].bal += 10;

pthread mutex unlock(&acc[x].mu);
pthread mutex unlock(&accl[y].mu);

}

Conditional variables

* |lets a thread wait for some condition to become true
* Remember the pattern for using conditional variables

Thread-1 Thread-2

mutex lock(&m) mutex lock(&m);

while (condition != true) condition = true;
cond wait(&c, &m); cond signal(&c);

//or cond broadcast(&c)
//condition is true

modify shared state mutex unlock(&m);

mutex unlock(&m)

H/W Atomic instructions

* Basic spinlock implementation

spin_lock(int *m)

{
while (xchg(m, 1)!= 0);

}

spin unlock(int *m)

{
xchg(m, 0);

}

