
Carnegie Mellon

Computer Systems Organization

Jinyang Li

Slides are based on Tiger Wang’s class

Why study CSO?

The path of your next few years

graduation

interview

programmer

The path of your next few years

graduation

interview

programmer

apply for graduate school

programmer & researcher

The path of your next few years

graduation

interview

programmer

graduate school

programmer & researcher

startup

Hire / become

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

enjoy life

~2M programmers in
2014 according to IDC

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

enjoy life

be in a relationship with

Taking CSO will affect each
step in the path!

For Graduation

Required class
– For CS Major
– Also for CS minor L

Prepare for your later system classes
– Operating Systems, Compilers, Networks,

Computer Architecture, Distributed Systems

For Interview

This class adds to your CV
– C Programming, UNIX, X86 Assembly …

Interview related topics
– Basic knowledge of Array, String, Bit Manipulation

Topics Distribution From LeetCode
~30%

Some examples and
exercises in this class are
derived from the real
interview questions !

Our text books are
considered as the
bibles of job interview.

For Graduate School Application

This class adds to your CV
– A

Research related topics
– Performance optimization

•  Memory layout, code optimization, memory allocation,
concurrent programming

– Security
•  Buffer Overflow

Startup

The life you imagine

CEO
CTO
CFO
COO

Startup

Your real life: full stack programmer

Server

Website

Optimizations

Phone’s App

My lawyer friend
 Take >10 hours each day to extract

information from the documents

My lawyer friend

I want to study programming.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

Ok, you need to study CSO first.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

Ok, you need to study CSO first.

…The user is offline

Conversa)on	
 between	
 programmers
Have	
 you	
 heard	
 of	
 the	

Meltdown	
 a9ack?	
 	

No.	
 Is	
 it	
 bad?	

Meltdown	
 lets	
 an	

a9acker	
 read	
 another	

process’	
 address	
 space!	

What	
 is	
 an	
 address	
 space?	

He	
 does	
 not	
 know	
 anything	

about	
 computers...	

Sorry	
 I	
 have	
 to	
 run	
 now,	

bye!	

For	
 Programming	

Understand how your program runs on the
hardware

– Why it fails
– Why it is slow

Why	
 it	
 fails?

What is the result of 1000,000 * 1000,000 ?

Why	
 it	
 fails?

What is the result of 1000,000 * 1000,000 ?
Expected answer: 1000,000,000,000 (1 trillion)

Why	
 it	
 fails?

int main()
{
 int a = 1000000;
 int b = 1000000;
 int r = a * b;
 printf("result is %d\n", r);
 return 0;
}

What is the result of 1000,000 * 1000,000 ?
Expected answer: 1000,000,000,000 (1 trillion)

Carnegie Mellon

Why	
 it	
 is	
 slow?	

Both implementations have exactly the same operations
count (2n3)
	

Example Matrix Multiplication

160x

Triple loop

Best code (K. Goto)

Th
ro

ug
hp

ut

What is CSO about?

Computer	
 System	
 Organiza)on

Computer	
 System	
 Organiza)on

Printed Circuit

Computer	
 System	
 Organiza)on

Printed Circuit

Layered Organization

Hardware

Software

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Logical Circuits,
Flip-Flops, Gates

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Logical Circuits,
Flip-Flops, Gates

CPU, Memory, Disk

Layered Organization

Hardware

Software

Transistors,	
 Diodes,	
 Resistors,	
 …

Logical	
 Circuits,	
 Flip-­‐Flops,	
 Gates,	
 …

CPU Memory I/O	

Layered Organization

Hardware

Software

Transistors,	
 Diodes,	
 Resistors,	
 …

Logical	
 Circuits,	
 Flip-­‐Flops,	
 Gates,	
 …

CPU Memory I/O	

System Software
(OS, compiler, VM…)

Layered Organization

Hardware

Software

Transistors,	
 Diodes,	
 Resistors,	
 …

Logical	
 Circuits,	
 Flip-­‐Flops,	
 Gates,	
 …

CPU Memory I/O	

System Software
(OS, compiler, VM…)

User Applications

Layered Organization

Hardware

Software

Transistors,	
 Diodes,	
 Resistors,	
 …

Logical	
 Circuits,	
 Flip-­‐Flops,	
 Gates,	
 …

CPU Memory I/O	

System Software
(OS, compiler, VM…)

User Applications

Users

Layered Organization

Hardware

Software

Transistors,	
 Diodes,	
 Resistors,	
 …

Logical	
 Circuits,	
 Flip-­‐Flops,	
 Gates,	
 …

CPU Memory I/O	

System Software

User Applications User	
 App
Operating	

System	

Compilers	
 …	

Abstraction

Hardware

Software

Transistors,	
 Diodes,	
 Resistors,	
 …

Logical	
 Circuits,	
 Flip-­‐Flops,	
 Gates,	
 …

CPU Memory I/O	

System Software

User Applications User	
 App

Operating	

System	

Compilers	
 …	

Abstract
Interface

The Scope of This Class

Hardware

Software

Transistors,	
 Diodes,	
 Resistors,	
 …

Logical	
 Circuits,	
 Flip-­‐Flops,	
 Gates,	
 …

Memory I/O	

System Software

User Applications User	
 App

Operating	

System	

Compilers	
 …	

Abstract
Interface

CPU

The Scope of This class

Focus on abstract interfaces exposed by
– CPU and Memory
– Operating System, Compilers

Hardware

Software
System Software

Operating	
 Systems	
 and	
 Compilers	

C Programming, OS Service, Memory
Management, Concurrent Programming

CPU	
 and	
 Memory

Assembly,	
 Virtual	
 memory,	
 Interrupt	

Schedule	
 of	
 Our	
 Class	

h9p://news.cs.nyu.edu/~jinyang/sp18-­‐cso/schedule.html	

overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)

C Programming

Schedule	
 of	
 Our	
 Class	

h9p://news.cs.nyu.edu/~jinyang/sp18-­‐cso/schedule.html	

overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations

C Programming

Assembly (X86)

Schedule	
 of	
 Our	
 Class	

h9p://news.cs.nyu.edu/~jinyang/sp18-­‐cso/schedule.html	

overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process

C Programming

Assembly (X86)

Virtual Memory

Schedule	
 of	
 Our	
 Class	

h9p://news.cs.nyu.edu/~jinyang/sp18-­‐cso/schedule.html	

overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process
Dynamic Memory Allocation I: malloc, free
Dynamic Memory Allocation II: design allocator
Dynamic Memory Allocation III: futher optimization

C Programming

Assembly (X86)

Virtual Memory

Memory Management

Schedule	
 of	
 Our	
 Class	

h9p://news.cs.nyu.edu/~jinyang/sp18-­‐cso/schedule.html	

overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process
Dynamic Memory Allocation I: malloc, free
Dynamic Memory Allocation II: design allocator
Dynamic Memory Allocation III: futher optimization
Concurrent Programming I: thread, race
Concurrent Programming II: lock
Concurrent Programming III: conditional variable
Concurrent Programming IV: Other primitives

C Programming

Assembly (X86)

Virtual Memory

Memory Management

Concurrent Programming

Carnegie Mellon

Course Perspective

Most Systems Courses are Builder-Centric
– Computer Architecture

•  Design pipelined processor in Verilog

– Operating Systems
•  Implement large portions of operating system

– Compilers
•  Write compiler for simple language

– Networking
•  Implement and simulate network protocols

Carnegie Mellon

Course Perspective

Most Systems Courses are Builder-Centric
– Computer Architecture

•  Design pipelined processor in Verilog

– Operating Systems
•  Implement large portions of operating system

– Compilers
•  Write compiler for simple language

– Networking
•  Implement and simulate network protocols

Carnegie Mellon

Course Perspective (Cont.)

This course is programmer-centric
– Understanding of underlying system makes a

more effective programmer
– Bring out the hidden hacker in everyone

To be a happy programmer, you should

Attend
–  Lectures (T/Th 11:00-12:15pm)
– Recitation (M 3:30-4:45 pm)

•  In-class exercises provide hands-on instruction
Do

–  5 Programming labs
– Recitation exercises

Pass
– Quiz 1 (2/27)
– Quiz 2 (3/27)
– Final exam

Grade	
 Breakdown

Recitation and Exercises 15%
Labs 40%
Quiz before midterm 10%
Midterm 15%
Final 20%

Bonus I: lecture and piazza participation 5%
Bonus II: extra-credit lab questions (points
vary)

Is CSO going to be hard?

We (the course staff) are here to help

Time	
 to	
 work	
 hard	

Who are we?

Jinyang Li Chien-chin Huang
Lecturer Recitation Leader

Head grader

cso-staff@cs.nyu.edu

Gu Jin Chengchen Li
Grader

Zekun Zhang
Grader Grader

Before Class
Read the related sections in the text books

“Computer Systems: A Programmer’s
Perspective, 3nd Edition”,
http://csapp.cs.cmu.edu

“The C Programming Language,
2nd Edition”, Prentice Hall, 1988,

Reserved at NYU library

Be Active In Class

Raise your hand at any time
– Ask	
 me	
 to	
 repeat,	
 repeat	
 and	
 repeat	

– Ask	
 ques)ons	

– Answer	
 ques)ons	
 from	
 me	
 or	
 others	

	

Have	
 discussion	
 and	
 make	
 friends	
 with	

each	
 others	

	

After Class

Finish all labs / exercises
– By yourself

A9end	
 the	
 recita)ons	

– Any issue of doing labs or exercises

Ge[ng	
 help	

– Office	
 hour,	
 Piazza	
 	

	

Carnegie Mellon

Policies

You must work alone on all assignments
– You may post questions on Piazza,
– You are encouraged to answer others’ questions,

but refrain from explicitly giving away solutions.

Labs & Exercises
– Assignments due at 11:59pm on the due date
– Everybody has 5 grace days
– Zero score after the due

http://news.cs.nyu.edu/~jinyang/sp18-cso/

Class Info

Recitation starts next Mon

Carnegie Mellon

Integrity	
 and	
 Collabora)on	
 Policy	
 	

We	
 will	
 enforce	
 the	
 policy	
 strictly.	

1.  The	
 work	
 that	
 you	
 turn	
 in	
 must	
 be	
 yours	

2.  You	
 must	
 acknowledge	
 your	
 influences	

3.  You	
 must	
 not	
 look	
 at,	
 or	
 use,	
 solu)ons	
 from	
 prior	
 years	
 or	

the	
 Web,	
 or	
 seek	
 assistance	
 from	
 the	
 Internet	

4.  You	
 must	
 take	
 reasonable	
 steps	
 to	
 protect	
 your	
 work	

–  You	
 must	
 not	
 publish	
 your	
 solu)ons	

5.  If	
 there	
 are	
 inexplicable	
 discrepancies	
 between	
 exam	
 and	

lab	
 performance,	
 we	
 will	
 over-­‐weight	
 the	
 exam	
 and	

interview	
 you.	

	

Do not turn in labs/exercises that are not yours

You won’t fail because of one missing labs

Carnegie Mellon

Integrity	
 and	
 Collabora)on	
 Policy	

We	
 will	
 enforce	
 this	
 policy	
 strictly	
 and	
 report	

violators	
 to	
 the	
 department	
 and	
 Dean.	

	

