
Carnegie Mellon

Computer Systems Organization

Jinyang Li

Slides are based on Tiger Wang’s class

Why study CSO?

The path of your next few years

graduation

interview

programmer

The path of your next few years

graduation

interview

programmer

apply for graduate school

programmer & researcher

The path of your next few years

graduation

interview

programmer

graduate school

programmer & researcher

startup

Hire / become

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

enjoy life

~2M programmers in
2014 according to IDC

The path of your next few years
graduation

interview

programmer

graduate school

programmer & researcher

startup
lawyer

Be able to
Hire / become

enjoy life

be in a relationship with

Taking CSO will affect each
step in the path!

For Graduation

Required class
– For CS Major
– Also for CS minor L

Prepare for your later system classes
– Operating Systems, Compilers, Networks,

Computer Architecture, Distributed Systems

For Interview

This class adds to your CV
– C Programming, UNIX, X86 Assembly …

Interview related topics
– Basic knowledge of Array, String, Bit Manipulation

Topics Distribution From LeetCode
~30%

Some examples and
exercises in this class are
derived from the real
interview questions !

Our text books are
considered as the
bibles of job interview.

For Graduate School Application

This class adds to your CV
– A

Research related topics
– Performance optimization

•  Memory layout, code optimization, memory allocation,
concurrent programming

– Security
•  Buffer Overflow

Startup

The life you imagine

CEO
CTO
CFO
COO

Startup

Your real life: full stack programmer

Server

Website

Optimizations

Phone’s App

My lawyer friend
 Take >10 hours each day to extract

information from the documents

My lawyer friend

I want to study programming.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

Ok, you need to study CSO first.

My lawyer friend

I want to study programming.

Ok, you need to study CSO first.

Hmm…, I want to marry a
programmer.

Ok, you need to study CSO first.

…The user is offline

Conversa)on	 between	 programmers
Have	 you	 heard	 of	 the	
Meltdown	 a9ack?	 	

No.	 Is	 it	 bad?	

Meltdown	 lets	 an	
a9acker	 read	 another	
process’	 address	 space!	

What	 is	 an	 address	 space?	

He	 does	 not	 know	 anything	
about	 computers...	

Sorry	 I	 have	 to	 run	 now,	
bye!	

For	 Programming	

Understand how your program runs on the
hardware

– Why it fails
– Why it is slow

Why	 it	 fails?

What is the result of 1000,000 * 1000,000 ?

Why	 it	 fails?

What is the result of 1000,000 * 1000,000 ?
Expected answer: 1000,000,000,000 (1 trillion)

Why	 it	 fails?

int main()
{
 int a = 1000000;
 int b = 1000000;
 int r = a * b;
 printf("result is %d\n", r);
 return 0;
}

What is the result of 1000,000 * 1000,000 ?
Expected answer: 1000,000,000,000 (1 trillion)

Carnegie Mellon

Why	 it	 is	 slow?	

Both implementations have exactly the same operations
count (2n3)
	

Example Matrix Multiplication

160x

Triple loop

Best code (K. Goto)

Th
ro

ug
hp

ut

What is CSO about?

Computer	 System	 Organiza)on

Computer	 System	 Organiza)on

Printed Circuit

Computer	 System	 Organiza)on

Printed Circuit

Layered Organization

Hardware

Software

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Logical Circuits,
Flip-Flops, Gates

Layered Organization

Hardware

Software

Transistors Diodes Resistors

Logical Circuits,
Flip-Flops, Gates

CPU, Memory, Disk

Layered Organization

Hardware

Software

Transistors,	 Diodes,	 Resistors,	 …

Logical	 Circuits,	 Flip-‐Flops,	 Gates,	 …

CPU Memory I/O	

Layered Organization

Hardware

Software

Transistors,	 Diodes,	 Resistors,	 …

Logical	 Circuits,	 Flip-‐Flops,	 Gates,	 …

CPU Memory I/O	

System Software
(OS, compiler, VM…)

Layered Organization

Hardware

Software

Transistors,	 Diodes,	 Resistors,	 …

Logical	 Circuits,	 Flip-‐Flops,	 Gates,	 …

CPU Memory I/O	

System Software
(OS, compiler, VM…)

User Applications

Layered Organization

Hardware

Software

Transistors,	 Diodes,	 Resistors,	 …

Logical	 Circuits,	 Flip-‐Flops,	 Gates,	 …

CPU Memory I/O	

System Software
(OS, compiler, VM…)

User Applications

Users

Layered Organization

Hardware

Software

Transistors,	 Diodes,	 Resistors,	 …

Logical	 Circuits,	 Flip-‐Flops,	 Gates,	 …

CPU Memory I/O	

System Software

User Applications User	 App
Operating	
System	

Compilers	 …	

Abstraction

Hardware

Software

Transistors,	 Diodes,	 Resistors,	 …

Logical	 Circuits,	 Flip-‐Flops,	 Gates,	 …

CPU Memory I/O	

System Software

User Applications User	 App

Operating	
System	

Compilers	 …	

Abstract
Interface

The Scope of This Class

Hardware

Software

Transistors,	 Diodes,	 Resistors,	 …

Logical	 Circuits,	 Flip-‐Flops,	 Gates,	 …

Memory I/O	

System Software

User Applications User	 App

Operating	
System	

Compilers	 …	

Abstract
Interface

CPU

The Scope of This class

Focus on abstract interfaces exposed by
– CPU and Memory
– Operating System, Compilers

Hardware

Software
System Software

Operating	 Systems	 and	 Compilers	

C Programming, OS Service, Memory
Management, Concurrent Programming

CPU	 and	 Memory

Assembly,	 Virtual	 memory,	 Interrupt	

Schedule	 of	 Our	 Class	
h9p://news.cs.nyu.edu/~jinyang/sp18-‐cso/schedule.html	
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)

C Programming

Schedule	 of	 Our	 Class	
h9p://news.cs.nyu.edu/~jinyang/sp18-‐cso/schedule.html	
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations

C Programming

Assembly (X86)

Schedule	 of	 Our	 Class	
h9p://news.cs.nyu.edu/~jinyang/sp18-‐cso/schedule.html	
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process

C Programming

Assembly (X86)

Virtual Memory

Schedule	 of	 Our	 Class	
h9p://news.cs.nyu.edu/~jinyang/sp18-‐cso/schedule.html	
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process
Dynamic Memory Allocation I: malloc, free
Dynamic Memory Allocation II: design allocator
Dynamic Memory Allocation III: futher optimization

C Programming

Assembly (X86)

Virtual Memory

Memory Management

Schedule	 of	 Our	 Class	
h9p://news.cs.nyu.edu/~jinyang/sp18-‐cso/schedule.html	
overview
bit, byte and int
float point
[C] basics, bitwise operator, control flow
[C] scopes rules, pointers, arrays
[C] structs, mallocs
[C] large program (linked list)
Machine Prog: ISA, Compile, movq
Machine Prog: Control Code (condition, jump instruction)
Machine Prog: Array allocation and access
Machine Prog: Procedure calls
Machine Prog: Structure, Memory Layout
Machine Prog: Buffer Overflow
Code optimizations
Virtual memory: Address Spaces/ Translation, Goal
Virtual memory: Page table/physcial to virtual
Process
Dynamic Memory Allocation I: malloc, free
Dynamic Memory Allocation II: design allocator
Dynamic Memory Allocation III: futher optimization
Concurrent Programming I: thread, race
Concurrent Programming II: lock
Concurrent Programming III: conditional variable
Concurrent Programming IV: Other primitives

C Programming

Assembly (X86)

Virtual Memory

Memory Management

Concurrent Programming

Carnegie Mellon

Course Perspective

Most Systems Courses are Builder-Centric
– Computer Architecture

•  Design pipelined processor in Verilog

– Operating Systems
•  Implement large portions of operating system

– Compilers
•  Write compiler for simple language

– Networking
•  Implement and simulate network protocols

Carnegie Mellon

Course Perspective

Most Systems Courses are Builder-Centric
– Computer Architecture

•  Design pipelined processor in Verilog

– Operating Systems
•  Implement large portions of operating system

– Compilers
•  Write compiler for simple language

– Networking
•  Implement and simulate network protocols

Carnegie Mellon

Course Perspective (Cont.)

This course is programmer-centric
– Understanding of underlying system makes a

more effective programmer
– Bring out the hidden hacker in everyone

To be a happy programmer, you should

Attend
–  Lectures (T/Th 11:00-12:15pm)
– Recitation (M 3:30-4:45 pm)

•  In-class exercises provide hands-on instruction
Do

–  5 Programming labs
– Recitation exercises

Pass
– Quiz 1 (2/27)
– Quiz 2 (3/27)
– Final exam

Grade	 Breakdown

Recitation and Exercises 15%
Labs 40%
Quiz before midterm 10%
Midterm 15%
Final 20%

Bonus I: lecture and piazza participation 5%
Bonus II: extra-credit lab questions (points
vary)

Is CSO going to be hard?

We (the course staff) are here to help

Time	 to	 work	 hard	

Who are we?

Jinyang Li Chien-chin Huang
Lecturer Recitation Leader

Head grader

cso-staff@cs.nyu.edu

Gu Jin Chengchen Li
Grader

Zekun Zhang
Grader Grader

Before Class
Read the related sections in the text books

“Computer Systems: A Programmer’s
Perspective, 3nd Edition”,
http://csapp.cs.cmu.edu

“The C Programming Language,
2nd Edition”, Prentice Hall, 1988,

Reserved at NYU library

Be Active In Class

Raise your hand at any time
– Ask	 me	 to	 repeat,	 repeat	 and	 repeat	
– Ask	 ques)ons	
– Answer	 ques)ons	 from	 me	 or	 others	
	

Have	 discussion	 and	 make	 friends	 with	
each	 others	

	

After Class

Finish all labs / exercises
– By yourself

A9end	 the	 recita)ons	
– Any issue of doing labs or exercises

Ge[ng	 help	
– Office	 hour,	 Piazza	 	

	

Carnegie Mellon

Policies

You must work alone on all assignments
– You may post questions on Piazza,
– You are encouraged to answer others’ questions,

but refrain from explicitly giving away solutions.

Labs & Exercises
– Assignments due at 11:59pm on the due date
– Everybody has 5 grace days
– Zero score after the due

http://news.cs.nyu.edu/~jinyang/sp18-cso/

Class Info

Recitation starts next Mon

Carnegie Mellon

Integrity	 and	 Collabora)on	 Policy	 	

We	 will	 enforce	 the	 policy	 strictly.	
1.  The	 work	 that	 you	 turn	 in	 must	 be	 yours	
2.  You	 must	 acknowledge	 your	 influences	
3.  You	 must	 not	 look	 at,	 or	 use,	 solu)ons	 from	 prior	 years	 or	

the	 Web,	 or	 seek	 assistance	 from	 the	 Internet	
4.  You	 must	 take	 reasonable	 steps	 to	 protect	 your	 work	

–  You	 must	 not	 publish	 your	 solu)ons	
5.  If	 there	 are	 inexplicable	 discrepancies	 between	 exam	 and	

lab	 performance,	 we	 will	 over-‐weight	 the	 exam	 and	
interview	 you.	

	
Do not turn in labs/exercises that are not yours

You won’t fail because of one missing labs

Carnegie Mellon

Integrity	 and	 Collabora)on	 Policy	

We	 will	 enforce	 this	 policy	 strictly	 and	 report	
violators	 to	 the	 department	 and	 Dean.	

	

