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Abstract Sybil identities. The popularity of content-hosting sites
has made such attacks very profitable as malicious enti-
Obtaining user opinion (using votes) is essential to rankss can promote low-quality content to a wide audience.
ing user-generated online content. However, any contefifccessful Sybil attacks have been observed in the wild.
voting system is susceptible to the Syhbil attack where a5 example, online polling on the best computer science
versaries can out-vote real users by creating many Syfihool motivated students to deploy automatic scripts to
identities. In this paper, we preseSumUp a Sybil- yote for their schools repeatedly [9]. There are even com-
resilient vote aggregation system that _Ieverage_s the trvdrcial services that help paying clients promote their
network among users to defend against Sybil attackgntent to the top spot on popular sites such as YouTube
SumUp uses the technique aflaptive vote flovaggre- py voting from a large number of Sybil accounts [22].
gation to limit the number of bogus votes cast by adver-|, ihis paper, we present SumUp, a Sybil-resilient on-

saries to no For?;hﬁ‘_” rt]he ”Embt,’l‘?r of attgck edge]:s n dHﬁ% content voting system that prevents adversaries from
trust nework (with high probability). Using user fee arbitrarily distorting voting results. SumUp leverages th

back on vot_es, SumUp f_urther reSt_”CtS the voting pow lst relationships that already exist among users (e.g. in
of adversaries who continuously misbehave to below the, ¢, of social relationships). Since it takes human ef-

number of their attack edges. Using detailed gvaluati%}ts to establish a trust link, the attacker is unlikely to
of several emstmg_spmal networks (YouTube, Flickr), w ossess many attack edges (links from honest users to an
;how SumUp’s ability t.o handle Syb'_l attacks. By appl adversarial identity). Nevertheless, he may create many
ing SumUp on the voting trace of Digg, a popular news s among Sybil identities themselves.

\gil:?asrﬁiiev;’erngil\(/s df?:(;]sws;rrf’)g?/ g\i/écéence of attack OnSumUp addresses thvete aggregation problemwhich
' can be stated as follow&ivenm votes on a given object,
1 Introduction qf_ which an arbitrary fraction may be from Sybil iden-_
tities created by an attacker, how do we collect votes in
The Web 2.0 revolution has fueled a massive prolifera-Sybil resilient manner? Sybil-resilient vote aggrega-
tion of user-generated content. While allowing users tion solution should satisfy three properties. First, the s
publish information has led to democratization of Welntion should collect a significant fraction of votes from
content and promoted diversity, it has also made the Wetnest users. Second, if the attacker hasittack edges,
increasingly vulnerable to content pollution from spanthe maximum number of bogus votes should be bounded
mers, advertisers and adversarial users misusing the $ys=4, independent of the attacker’s ability to create many
tem. Therefore, the ability to rank content accurately 8ybil identities behind him. Third, if the attacker repeat-
key to the survival and the popularity of many useedly casts bogus votes, his ability to vote in the future
content hosting sites. Similarly, content rating is also ishould be diminished. SumUp achieves all three proper-
dispensable in peer-to-peer file sharing systems to hegs with high probability in the face of Sybil attacks. The
users avoid mislabeled or low quality content [7, 16, 25]key idea in SumUp is thadaptive vote flowtechnique
People have long realized the importance of incorpthat appropriately assigns and adjusts link capacities in
rating user opinion in rating online content. Traditiondhe trust graph to collect the net vote for an object.
ranking algorithms such as PageRank [2] and HITS [12] Previous works have also exploited the use of trust net-
rely on implicit user opinions reflected in the link strucworks to limit Sybil attacks [3,15,18,26,27,30], but none
tures of hypertext documents. For arbitrary content typetiectly addresses the vote aggregation problem. Sybil-
user opinion can be obtained in the form of explicitimit [26] performs admission control so that at most
votes. Many popular websites today rely on user votes@log n) Sybil identities are accepted per attack edge
rank news (Digg, Reddit), videos (YouTube), documendgsnong. honest identities. As SybilLimit results in 430
(Scribd) and consumer reviews (Yelp, Amazon). bogus votes per attack edge in a million-user system [26],
Content rating based on users’ votes is prone to v@@amuUp provides notable improvement by limiting bogus
manipulation by malicious users. Defending against votetes to one per attack edge. Additionally, SumUp lever-
manipulation is difficult due to th&ybil attackwhere ages user feedback to further diminish the voting power
the attacker can out-vote real users by creating masfyadversaries that repeatedly vote maliciously.



In SumUp, each vote collector assigns capacities ded in the hyperlink structure of web pages. A hyperlink
links in the trust graph and computes a set of apprdrem page A to page B can be viewed as an implicit en-
imate max-flow paths from itself to all voters. Becaus#gorsement (or vote) of page B by the creator of page A. In
only votes on paths with non-zero flows are counted, theth algorithms, a page has a higher ranking if it is linked
number of bogus votes collected is limited by the total cts by more pages with high rankings. Both PageRank and
pacity of attack edges instead of links among Sybil ideRHTS are vulnerable to Sybil attacks. The attacker can
tities. Typically, the number of voters on a given objesignificantly amplify the ranking of a page A by creating
is much smaller than the total user populatioh Based many web pages that link to each other and also to A. To
on this insight, SumUp assigid$,,., units of capacity in mitigate this attack, the ranking system must probabilisti
total, thereby limiting the number of votes that can be catally reset its PageRank computation from a small set of
lected to beC,,,... SumUp adjusts’,, ., automatically trusted web pages with probabilityf20]. Despite proba-
according to the number of honest voters for each objédistic resets, Sybil attacks can still amplify the PageRa
so that it can aggregate a large fraction of votes from hasf-an attacker’s page by a factor bfe [29], resulting in a
est users. A€, is far less tham, the number of bo- big win for the attacker becauseés small.
gus votes collected on a single object (i.e. the attack ca- .
pacity) is no more than the number of attack edges.( %2 User Reputation Systems
SumUp’s security guarantee on bogus votes is probabilstser reputation system computes a reputation value for
tic. If a vote collector happens to be close to an attaelch identity in order to distinguish well-behaved identi-
edge (a low probability event), the attack capacity couligs from misbehaving ones. It is possible to use a user
be much higher than,. By re-assigning link capacitiesreputation system for vote aggregation: the voting system
using feedback, SumUp can restrict the attack capacityctn either count votes only from users whose reputations
be belowe 4 even if the vote collector happens to be clos&e above a threshold or weigh each vote using the voter's
to some attack edges. reputation. Like SumUp, existing reputation systems miti-

Using a detailed evaluation of several existing socighte attacks by exploiting two resources: the trust network
networks (YouTube, Flickr), we show that SumUp su@mong users and explicit user feedback on others’ behav-
cessfully limits the number of bogus votes to the nunmsrs. We discuss the strengths and limitations of existing
ber of attack edges and is also able to collecd0% of reputation systems in the context of vote aggregation and
votes from honest voters. By applying SumUp to the vdtow SumUp builds upon ideas from prior work.

ing trace and social network of Digg (an online news Yoltfeedback based reputations In EigenTrust [11] and

E¥edence [25], each user independently compueeson-
Allized reputation values for all users based on past trans-
. 2 ; . actions or voting histories. In EigenTrust, a user increase
aruclgs eXh'b'.t strong.ewdence of Sybil attac_:ks. (or decreases) another user’s rating upon a good (or bad)
This paperis organized as follows. In Section 2, we digzhsaction. In Credence [25], a user gives a high (or low)

cus; rlelatéedhwork and in Sec_tion 3 V;T define the Syﬁ?ﬁ‘ﬁng to another user if their voting records on the same
model and the vote aggregation problem. Sec_uon 4 ULt of file objects are similar (or dissimilar). Because not
lines the overall approach of SumUp and Sections 5

! . . . airs of users are known to each other based on direct
6 presentthe detailed design. In Section 7, we describe RHE

. ) ; . . raction or votes on overlapping sets of objects, both
evaluation results. Finally in Section 8, we discuss how&’redence and EigenTrust use a PageRank-style algorithm

extend SumUp to decentralize setup and we ConCll‘detdnpropagate the reputations of known users in order to
Section 9. calculate the reputations of unknown users. As such, both
systems suffer from the same vulnerability as PageRank
2 Related Work where an attacker can amplify the reputation of a Sybil
Ranking content is arguably one of the Web’s most indentity by a factor oft /e.
portant problems. As users are the ultimate consumers oNeither EigenTrust nor Credence provide provable
content, incorporating their opinions in the form of eitheguarantees on the damage of Sybil attacks under arbitrary
explicit or implicit votes becomes an essential ingredieattack strategies. In contrast, SumUp bounds the voting
in many ranking systems. This section summarizes relafmiver of an attacker on a single object to be no more than
work in vote-based ranking systems. Specifically, we ethie number of attack edges he possesses irrespective of the
amine how existing systems cope with Sybil attacks [Bjtack strategies in use. SumUp uses only negative feed-
and compare their approaches to SumuUp. back as opposed to EigenTrust and Credence that use both
. . positive and negative feedback. Using only negative feed-
2.1 Hyperlink-based ranking back has the advantage that an attacker cannot boost his
PageRank [2] and HITS [12] are two popular ranking akttack capacity easily by casting correct votes on objects
gorithms that exploit the implicit human judgment embedhat he does not care about.

that have been marked “popular” by Digg. Based on m
ual sampling, we believe that at ledsl% of suspicious



DSybil [28] is a feedback-based recommendation sy8- The Vote Aggregation Problem
tem that provides provable guarantees on the damages of

arbitrary attack strategies. DSybil differs from SumUp it this section, we outline the system model and formalize
its goals. SumUp is a vote aggregation system which #ie vote aggregation problem that SumUp addresses.
lows for arbitrary ranking algorithms to incorporate col- System model:We describe SumUp in a centralized
lected votes to rank objects. For example, the ranking sétup where a trusted central authority maintains all the
gorithm can rank objects by the number of votes collectadformation in the system and performs vote aggregation
In contrast, DSybil's recommendation algorithm is fixedising SumUp in order to rate content. This centralized
it recommends aandomobject among all objects whosemode of operation is suitable for web sites such as Digg,
sum of the weighted vote count exceeds a certain thre$buTube and Facebook, where all users’ votes and their
old. trust relationships are collected and maintained by a sin-
Trust network-based reputations A number of pro- gle trqstgd entity. We dgscribg how SumUp can be applied
posals from the semantic web and peer-to-peer literatdté* distributed setting in Section 8.

rely on the trust network between users to compute repuSUMUp leverages the trust network among users to de-
tations [3, 8, 15, 21, 30]. Like SumUp, these proposals é&Nd against Sybil attacks [3,15,26,27,30]. Each trut lin
ploit the fact that it is difficult for an attacker to obtairlS directional. However, the cre_atlon of each link requires
many trust edges from honest users because trust Iiffk& consent of both users. Typically, usareates a trust
reflect offline social relationships. Of the existing worKink to j if 7 has an offline social relationship o Sim-
Advogato [15], Appleseed [30] and Sybilproof [3] are rellar to previous work [18, 26], SumUp requires that links
silient to Sybil attacks in the sense that an attacker canAé® difficult to establish. As a result, an attacker only pos-
boost his reputation by creating a large number of SySfsses a small number of attack edgeg from honest
identities “behind” him. Unfortunately, a Sybil-resilienUsers to colluding adversarial identities. Even though
user reputation scheme does not directly translate intés gmall, the attacker can create many Sybil identities and
Sybil-resilient voting system: Advogato only computes ik them to adversarial entities. We refer to votes from
non-zero reputation for a small set of identities, disatlo0!luding adversaries and their Sybil identities as bogus
ing a majority of users from being able to vote. AlthougHotes-

an attacker cannotimprove his reputation with Sybil iden- SumUp aggregates votes from one or more trustee
tities in Appleseed and Sybilproof, the reputation of Sybgpllectors A trusted collector is required in order to break
identities is almost as good as that of the attacker’s ndhe symmetry between honest nodes and Sybil nodes [3].
Sybil accounts. Together, these reputable Sybil idestiti®umUp can operate in two modes depending on the choice

can cast many bogus votes. of trusted vote collectors. Ipersonalized vote aggrega-
) . tion, SumUp uses each user as his own vote collector to
2.3 Sybil Defense using trust networks collect the votes of others. As each user collects a differ-

Many proposals use trust networks to defend against Sydjit number of votes on the same object, she also has a
attacks in the context of different applications: Sybififferent (personalized) ranking of content.dlobal vote
Guard [27] and SybilLimit [26] help a node admit anaggregation SumUp uses one or more pre-selected vote
other node in a decentralized system such that the &g@llectors to collect votes on behalf of all users. Global
mitted node is likely to be an honest node instead ofvate aggregation has the advantage of allowing for a sin-
Sybil identity. Ostra [18] limits the rate of unwanted comgle global ranking of all objects; however, its performance
munication that adversaries can inflict on honest nodéglies on the proper selection of trusted collectors.
Sybil-resilient DHTs [5, 14] ensure that DHT routing is Vote Aggregation Problem: Any identity in the trust
correct in the face of Sybil attacks. Kaleidoscope [28ftwork including Sybils can cast a vote on any object to
distributes proxy identities to honest clients while minexpress his opinion on that object. In the simplest case,
mizing the chances of exposing them to the censor withch vote is either positive or negative (+1 or -1). Alterna-
many Sybil identities. SumUp builds on their insights artively, to make a vote more expressive, its value can vary
addresses a different problem, namely, aggregating votgthin a range with higher values indicating more favor-
for online content rating. Like SybilLimit, SumUp boundsble opinions. A vote aggregation system collects votes
the power of attackers according to the number of attagck a given object. Based on collected votes and various
edges. In SybilLimit, each attack edge result®iflogn) other features, a separate ranking system determines the
Sybilidentities accepted by honest nodes. In SumUp, edictal ranking of an object. The design of the final rank-
attack edge leads to at most one vote with high probabilityg system is outside the scope of this paper. However, we
Additionally, SumUp uses user feedback on bogus voteste that many ranking algorithms utilibeththe number

to further reduce the attack capacity to below the numhsrvotes and the average value of votes to determine an
of attack edges. The feedback mechanism of SumUpolgject’s rank [2, 12]. Therefore, to enable arbitrary rank-
inspired by Ostra [18]. ing algorithms, a vote aggregation system should collect



capacity, the attack capacity using the max-flow based ap-
proach is bounded hy.

The concept of max-flow has been applied in several
reputation systems based on trust networks [3, 15]. When

m NI Sybil voter applied in the context of vote aggregation, the challenge is
vote [ . “
collector NS that links close to the vote collector tend to become “con-
ST honestvoter gested” (as shown in Figure 1), thereby limiting the total
Tt >(B) number of votes collected to be no more than the collec-
honest voter tor's node degree. Since practical trust networks are spars

with small median node degrees, only a few honest votes
Figure 1:SumUp computes a set of approximate max-flog@n be collected. We cannot simply enhance the capac-
paths from the vote collectarto all voters (A,B,C,D). Straight ity of each link to increase the number of votes collected
lines denote trust links and curly dotted lines represemwtite  Since doing so also increases the attack capacity. Hence, a
flow paths along multiple links. Vote flow paths to honest voflow-based vote aggregation system faces the tradeoff be-
ers are “congested” at links close to the collector whildpao fWeen the maximum number of honest votes it can collect
Sybil voters are also congested at far-away attack edges. ~ and the number of potentially bogus votes collected.
The adaptive vote floechnique addresses this trade-
a significant fraction of votes from honest voters. off by exploiting two basic observations. First, the number
A voting system can also let the vote collector prdf honest users voting for an object, even a popular one,
vide negativefeedback on malicious votes. In personals Significantly smaller than the total number of users. For
ized vote aggregation, each collector gives feedback §2mpled97% of popular articles on Digg have fewer than
cording to his personal taste. In global vote aggregatidiy00 votes which represents/ of active users. Second,
the vote collector(s) should only provide objective fee§ote flow paths to honest voters tend to be only “con-
back, e.g. negative feedback for positive votes on C(g,estedl“ at links close to the vote collector while paths
rupted files. Such feedback is available for a very sméf Sybil voters are also congested at a few attack edges.
subset of objects. Whene, is small, attack edges tend to be far away from
We describe the desired properties of a vote aggregatigf Vote collector. As shown in Figure 1, vote flow paths
system. Let? = (V; E) be a trust network with vote col-t0 honest votgrs A qr!d B are congested at thellinkhile
lectors € V. V is comprised of an unknown set of honed@ths to Sybil identities C and D are congested at both
usersV,, C V (includings) and the attacker controls all@nd attack ede. _
vertices inV \ V;,, many of which represent Sybil iden- The adaptive vote flow computation uses three key
tities. Lete 4 represent the number of attack edges froffléas. First, the algorithm restricts the maximum num-
honest users ifiy, to V' \ V4. Given that nodes i cast ber of votes collected on an object to a vallg... As
votes on a specific object, a vote aggregation mechaniSmas iS used to assign the overall capacity in the trust
should achieve three properties: graph, a small’,,, .. result_s in Iess_ capacity for the at-
1. Collect a large fraction of votes from honest users.[acker. SumUp can adaptively adjuSt,.. to collect a
2. Limit the number of bogus votes from the attackdqrge fraction of honest votes on any given object. When
by ¢4 independent of the number of Sybil identitied!® number of honest voters i(n*) wherea < 1, the

in v\ V. expected number of bogus votes is limited t& o(1) per
3. Eventually ignore votes from nodes that repeatedjfack €dge (Section 5.4).
cast bogus votes using feedback. The second important aspect of SumUp relatesao
pacity assignment.e. how to assign capacities to each
4 Basic Approach trust link in order to collect a large fraction of honest \&te

and only a few bogus ones? In SumUp, the vote collec-
This section describes the intuition behiadaptive vote tor distributes’,,,.., ticketsdownstream in a breadth-first
flow that SumUp uses to address the vote aggregatigarch manner within the trust network. The capacity as-
problem. The key idea of this approach is to appropriataélgned to a link is the number of tickets distributed along
assign link capacities to bound the attack capacity.  the link plus one. As Figure 2 illustrates, the ticket distri

In order to limit the number of votes that Sybil identibution process introducesvate enveloparound the vote

ties can propagate for an object, SumUp computes a setalfector s; beyond the envelope all links have capacity
max-flow paths in the trust graph from the vote collectdr The vote envelope contairs,,,, nodes that can be
to all voters on a given object. Each vote flow consume®wed as entry points. There is enough capacity within
one unit of capacity along each link traversed. Figuretiie envelope to collecet), .. votes from entry points. On
gives an example of the resulting flows from the collethe other hand, an attack edge beyond the envelope can
tor s to voters A,B,C,D. When all links are assigned unfiropagate at mogtvote regardless of the number of Sybil
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. ) o Figure 3:Each link shows the number of tickets distributed to
Figure 2:Through ticket distribution, SumUp creates a vote eat link from s (Cimas=6). A node consumes one ticket and
velope around the collector. The capacities of links beyied e i tes the remaining evenly via its outgoing linkstte ext
envelope are assigned to be one, limiting the attack CapaCit | q| Tickets are not distributed to links pointing to theee

be at most one per attack edge for adversaries outside thislggel (B—A), or to a lower level (E-B). The capacity of each
velope. There is enough capacity within the envelope, suah tinkis equal to one plus the number of tickets.
nodes inside act like entry points for outside voters.

é:tgllef:t_or_with at leastC,,, . gntry points. The goal is_
g9, minimize the chances of including an attack edge in
the envelope and to ensure that there is enough capacity
ew_ithin the envelope so that all vote flows frof,,.,. en-

6%/_ points can reach the collector.

identities behind that edge. SumUp re-distributes tick
based on feedback to deal with attack edges within
envelope.

The final key idea in SumUp is to leverage user fe
back to penalize attack edges that continuously pro
gate bogus votes. One cannot penalize individual identi-¥We achieve this goal usingtieket distributionmecha-
ties since the attacker may a|Ways propagate bogus V(ﬂ&n which results in deCfeaSing CapaCitieS for links with
using new Sybil identities. Since an attack edge is alwaj§reasing distance from the vote collector. The distri-
present in the path from the vote collector to a malicio@ition mechanism is best described using a propagation
voter [18], SumUp re-adjusts capacity assignment acr#dgdel where the vote collector is to spredg... tickets

links to reduce the capacity of penalized attack edges. across all links in the trust graph. Each ticket corresponds
to a capacity value of 1. We associate each node with a

5 SumUp Design level according to its shortest path distance from the vote

collector,s. Nodes is at level 0. Tickets are distributed to

In thi; section, we present the basic capac_ity assignmﬁgaes one level at a time. If a node at levbhs received
algorithm that achieves two of the three desired Properties . .\ ot from nodes at levél— 1. the node consumes

. . . i X 7

discussed in Section 3: (a) Cpllect a large fraction of VOtSﬁe ticket and re-distributes the remaining tickets evenly

from honest users; (b) Restrict the number of bogus VOIeS s all its outgoing links to nodes at level 1, i.e

t_o one per attack edge Wit_h high propability. Later in Se¢- , = tin — 1. The capacity value of each link ié s.e.t o

:I(;)getsa’llvz/l\itf\hrzvgehaot\g(;gl ?r(]jijsubsetﬁ:\?:g%g:rsse;ig?:gzgg%? one plus the ngmper of tickgts distributeq on that link.
We describe how link capacities are assianed di ‘Tickets are not dlstr|buteq to links connecting nodes at

: . K cap 9 IVERB same level or from a higher to lower level. The set of

parUcuIarCmam n Sectlon. =-1 and present a fagt algqiodes with positive incoming tickets fall within the vote

rithm to calculate approximate max-flow paths in Se%’nvelope and thus represent the entry points

tion 5.2. In Section 5.3, we introduce an additional op- __ o ’ )

timization strategy that prunes links in the trust network 11cket distribution ensures that all,,.. entry points

so as to reduce the number of attack edges. We formd)R¥e positive vote flows to the vote collector. Therefore,

analyze the security properties of SumUp in Section gfthere exists an edge-independent path connecting one of

and show how to adaptively sét,,... in Section 5.5. the entry points to an outside voter, the corresponding vote
can be collected. We show in Section 5.4 that such a path

5.1 Capacity assignment exists with good probability. Whefi,,, ... is much smaller

The goal of capacity assignment is twofold. On the ofgan the number of honest nodes, (the vote envelope is
hand, the assignment should allow the vote collector {8"y Small. Therefore, all attack edges reside outside the
gather a large fraction of honest votes. On the other hafBYelope, resulting i6’s ~ e 4 with high probability.
the assignment should minimize the attack capacity suchFigure 3 illustrates an example of the ticket distribution
thatCy ~ e4. process. The vote collectos)(is to distributeC,,,.=6

As Figure 2 illustrates, the basic idea of capacity asekets among all links. Each node collects tickets from
signment is to construct a vote envelope around the vite lower level neighbors, keeps one to itself and re-



distributes the rest evenly across all outgoing links to theighbors an adversarial node has, the easier for it to trick
next level. In Figure 3s sends 3 tickets down each of itean honest node into trusting it. Therefore, the number of
outgoing links. Since A has more outgoing linky than attack edges in the pruned network is likely to be smaller
its remaining tickets2), link A—D receives no tickets. than those in the original network. On the other hand,
Tickets are not distributed to links between nodes at theuning is unlikely to affect honest users since each honest
same level (B~A) or to links from a higher to lower level node only attempts to cast one vote via one of its incoming
(E—B). The final number of tickets distributed on eaclinks.

link is shown in Figure 3. Except for immediate outgoing Since it is not possible to accurately discern honest
edges from the vote collector, the capacity value of eaictentities from Sybil identities, we give all identitieseth
link is equal to the amount of tickets it receives plus onehance to have their votes collected. In other words, prun-

. . ing should never disconnect a node. The minimally con-
5.2 Approximate Max-flow calculation nected network that satisfies this requirement is a tree

Once capacity assignment is done, the task remains to £€gpted at the vote collector. A tree topology minimizes
culate the set of max-flow paths from the vote collector @tack edges but is also overly restrictive for honest nodes
all voters on a given object. It is possible to use existifgcause each node has exactly one path from the collec-
max-flow algorithms such as Ford-Fulkerson and Prefld@/: if that path is saturated, a vote cannot be collected.
push [4] to compute vote flows. Unfortunately, these eR better tradeoff is to allow each node to have at most
isting algorithms requir€®(E) running time to find each din_thres > 1 incoming links in the pruned network
vote flow, whereE is the number of edges in the graptsO that honest nodes have a large set of diverse paths
Since vote aggregation only aims to collect a large fractigfile limiting each adversarial node to onty,, 4 at-
of honest votes, it is not necessary to compute exact mégck edges. We examine the specific parameter choice of
flow paths. In particular, we can exploit the structure &fn_thres in Section 7.
capacity assignment to compute a set of approximate vot&runing each node to have at mast_;5. incoming
flows inO(A) time, whereA is the diameter of the graphllinks is done in several steps. First, we remove all links ex-
For expander-like networks\ = O(log n). For practical cept those connecting nodes at a lower leijetd neigh-
social networks with a few million userg, = 20. bors at the next level - 1). Next, we remove a subset of
Our approximation algorithm works incrementally bﬂ'pcoming links at each node SO that the remaining Iir_1ks do
finding one vote flow for a voter at a time. Unlike thé0t exceedli, i 5. In the third step, we add back links
classic Ford-Fulkerson algorithm, our approximation pdiemoved in step one for nodes with fewer th&p ..
forms a greedy search from the voter to the collector f#c0ming links. Finally, we add one outgoing link back
O(A) time instead of a breadth-first-search from the cd hodes that have no outgoing links after step three, with
lector which take®)( E) running time. Starting at a voter,Priority given to links going to the nextlevel. By preferen-
the greedy search strategy attempts to explore a nod&aly preserving links from lower to higher levels, prugin
a lower level if there exists an incoming link with posid0€es notinterfere with SumUp’s capacity assignment and
tive capacity. Since it is not always possible to find sudlew computation.
a candidate for exploration, the approximation algorithm 4 Security Properties
allows a thresholdtj of non-greedy steps which explores
nodes at the same or a higher level. Therefore, the nu

ber of nodes visited by the greedy search is bounded . .
s measurement studies have shown that social networks

(A + 2t). Greedy search works well in practice. For link8YS deed der-like 131, The link . S
within the vote envelope, there is more capacity for lowef € 'g ee exO;I)an er-like [1 h] The md pruning optlljmlza—
level links and hence greedy search is more likely to fif{gn does not destroy a graph’s expander property because

a non-zero capacity path by exploring lower-level noddkpreserves the level of each node in the original graph.

For links outside the vote envelope, greedy search resultg)ur_ analysis provides bounds on the expected attack
in short paths to one of the vote entry points. capacity,C'4, and the expected fraction of votes collected

if C.e honest users vote. The average-case analysis
5.3 Optimization via link pruning assumes that each attack edge is a random link in the

We introd timizati irat that perf i raph. For personalized vote aggregation, the expectation
€ introduce an optimization strategy that pertorms g o ey over all vote collectors which include all honest

pruning to reduce the number of attack edges, therebyﬁ%-de& In the unfortunate but rare scenario where an ad-

qlucing thg attack capacity. Prl_ming is _performed prior.([/%rsarial node is close to the vote collector, we can use
link capacity assignment and its goal is to bound the i '

fsedback to re-adjust link capacities (Section 6).
degree of each node to a small valdg, ;. cs. AS a re- J P ( )

sult, the number of attack edges is reduced if some ddweorem 5.1 Given that the trust networ onn nodes
versarial nodes have more thdn _1,.... incoming edges is a bounded degree expander graph, the expected capac-
from honest nodes. We speculate that the more honigsper attack edge isE(ecT” =1+ O(% log Crnaz)

iSs section provides a formal analysis of the security
perties of SumUp assuming an expander graph. Vari-



which is1 + o(1) if Cpex = O(n®) for « < 1. If of the min-cut value because each vote flow only uses one

ea - Cmaz < n, the capacity per attack edge is boundedf an honest voter'd incoming links. Therefore, the frac-

by 1 with high probability. tion of votes that can be collected is at le&ét— \;) -
Cmam(n - Cmam)/(n -d - Omaz) - %(1 - %)

Proof Sketch Let Ll represent the number of nodes EFtor well-connected graphs like expandé"§is well sep-

leveli with L, = 1. Let E; be the number of edges pointarated fromi, so that a significant fraction of votes can be
ing from leveli — 1 to leveli. Notice thatE; > L;. Let cgjlected.

T; be the number of tickets propagated from level 1
to ¢ with Ty = C},42- The number of tickets at each leveg 5 SettingC,,., adaptively

is reduced by the number of nodes at the previous Ie\(ﬁhenn honest users vote on an object, SumUp should

(le. T = T;1 — Li—). Therefore, the number of IeV-ideally setC,,,q. to ben, in order to collect a large frac-

els with non-zero tickets is at Mo&(iog(Cinax)) S L jon of honest votes on that object. In practie,/n is

grows exponentially in an expander graph. For a rando MY <mall for anv obiect. even a very popular one. Hence
placed attack edge, the probability of its being at le\s| y y onject, Yy popule ) ’
tgm‘”” = n, < n and the expected capacity per attack

at mostL;/n. Therefore, the expected capacity of a ra Sdge is 1. We note that evenif, ~ n, the attack capacity

L; T
dom attaLgk gdg(? can be calcculgtedaiszi(T " %) < s siill bounded byO(logn) per attack edge.
1+ (5 =) = 14+ 0(=52= log Cnae ). Therefore, ¢ s impossible to precisely calculate the number of
if Crae = O(n®) for o < 1, the expected attack capacityonest votes(,). However, we can use the actual num-
per attack edge i + o(1). ber of votes collected by SumUp as a lower bound esti-
Since the number of nodes within the vote envelopeyigate forn,. Based on this intuition, SumUp adaptively
at mostCiyq., the probability of a random attack edgeetsc,,,, according to the number of votes collected for
being located outside the envelope is ©z=. Therefore, each object. The adaptation works as follows: For a given
the probability that any of the, attack edges lies within ghject, SumUp starts with a small initial value 16,4,
the vote envelope is— (1 — Szez)es < £4Cumaz Hence, e.g.¢,,., = 100. Subsequently, if the number of actual
if ea - Cmae = n® wWherea < 1, the attack capacity isyotes collected exceegs€,,.., wherep is a constant less
bounded byt with high probability. than1, SumUp doubles th€,,... in use and re-runs the
capacity assignment and vote collection procedures. The
%‘ubling ofC,,,. coOntinues until the number of collected

Theorem 5.1 is for expected capacity per attack ed
In the worse case when the vote collector is adjacent\}(s)teS becomes less thafi!
max -

some adversarial nodes, the attack capacity can be a SI9%e show that this adaptive strategy is robust, i.e. the

nificant fractlon_ ome_I. Such rare worst case scenarios ,vimum value of the resulting,,., will not dramati-
are addressed in Section 6.

cally exceedh,, regardless of the number of bogus votes
cast by adversarial nodes. Since adversarial nodes at-
fgmpt to cast enough bogus votes to saturate attack ca-
pacity, the number of votes collected is at most+ C'4
whereCy = ea(1 + S22 log Cy,a.). The doubling of

Cmaz Stops when the number of collected votes is less
thanpC,,.... Therefore, the maximum value 6f,,,,. that
Proof Sketch SumUp creates a vote envelop consistirfifops the adaptation is one that satisfies the following in-
of C,qe €ntry points via which votes are collected. Te€quality:
prove that there exists a large fraction of vote flows, we
argue that the minimum cut of the graph between the set
of C,,4. €ntry points and an arbitrary set6f,,,, honest ny +ea(l+ —1og Crnaz) < pCrmaz
voters is large. "

Expanders are well-connected graphs. In particular, theSincelog C',... < logn, the adaptation terminates with
Expander mixing lemma [19] states that for anySeind  Cl,qp = (10 +e4)/(p — 1252). As p > 187 'we derive
T in ad-regular expander graph, the expected number@f,,, = 1(n,+ea). The adaptive strategy doubl€s, ...

. Lo P .

edges betwee and T is (d — X\2)|S| - |T'|/n, where every iteration, hence it overshoots by at most a factor
Ao Is the second largest eigenvalue of the adjacency noétwo. Therefore, the resulting’,,,... found iSCi,q. =
trix of GG. Let S be a set of nodes containirg,,,. en- %(nv + ea). As we can see, the attacker can only affect
try points andl” be a set of nodes containidg,,.,, hon- the C,,., found by an additive factor of 4. Sincee 4 is
est voters, thu$S| + |T'| = n and|S| > Cy...|T| > small, the attacker has negligible influence on g,
Cinaz- Therefore, the min-cut value betweSnandT is found.
=(d=X)|S]|IT|/n > (d— A2) - Crnaz(n — Cpnaa) /10 The previous analysis is done for the expected case with
The number of vote flows betweéhandT is atleastl/d random attack edges. Even in a worst case scenario where

Theorem 5.2 Given that the trust networ& onn nodes

is a d-regular expander graph, the expected fraction
votes that can be collected out 6f,,,, honest voters is
d=22 (1 Emez ) where), is the second largest eigenvalu
of the adjacency matrix of G.




some attack edges are very close to the vote collector, loev network per vote collector and only allows the col-
adaptive strategy is still resilient against manipulation lector to incorporate feedback for its associated network
the worst case scenario, the attack capacity is propottioimeorder to ensure that feedback is always trustworthy.

to Cinag, 1.€. Ca4 = xChqz. SiNnCe no vote aggregatio . .

scheme can defend against an attacker who controls anﬁlg- Capacity adjustment

jority of immediate links from the vote collector, we ar@ he capacity assignment in Section 5.1 lets each node dis-
only interested in the case whefe < 0.5. The adap- tribute incoming tickets evenly across all outgoing links.
tive strategy stops increasidg,,., whenn, + 2Cp,.. < Inthe absence of feedback, it is reasonable to assume that
PCmaz, thus resulting inC), . < 2%’; As we can segp all outgoing links are equally trustworthy and hence to
must be greater thanto prevent the attacker from causassign them the same number of tickets. When negative
ing SumUp to increasé,,.... to infinity. Therefore, we set feedback is available, a node should distribute fewer tick-

p = 0.5 by default. ets to outgoing links with higher penalty values. Such ad-
) justment is particularly useful in circumstances where ad-
6 Leveraging user feedback versaries are close to the vote collector and hence might

The basic design presented in Section 5 does not addfESEVE a large number of tickets. ,

the worst case scenario whefe could be much higher | "€ goal of capacity adjustmentis to compute a weight,

than 4. Furthermore, the basic design only bounds tid?:), @s a function of the link's penalty. The num-

number of bogus votes collected on a single object. RE" Of tickets a node distributes to its outgoing link

a result, adversaries can still cast upetp bogus votes IS Proportional to the link's weight, i.et; = t,u *

on everyobject in the system. In this section, we utiliz& Pi)/ 2 vienrs W(Pi)- The-ques_tlon then becomes how

feedback to address both problems. to computeau(p;). Clearly, E_i||nk.WIth a high penalty value
SumUp maintains a penalty value for each link and usduld have a smaller weight, i@(p:)<w(p;) if pi>p;.

the penalty in two ways. First, we adjust each link's C@_noth_er desirable property is that if the penaltl_es on two

pacity assignment so that links with higher penalties haV/8S increase by the same amount, the ratio of their

lower capacities. This helps redu€e when some attack WEIgNts remains unchanged. In oth?r ;/vords,( the weight

: H i i+p’

edges happen to be close to the vote collector. Second fuiction should satistyvp’, pi, p;, 455 = fj(zﬁz,;.

eliminate links whose penalties have exceeded a certaltis requirement matches our intuition that if two links

threshold. Therefore, if adversaries continuously misbgave accumulated the same amount of additional penal-

have, the attack capacity will drop belaws over time. ties over a period of time, the relative capacities between

We describe how SumUp calculates and uses penaltytiem should remain the same. Since the exponential func-

the rest of the section. tion satisfies both requirements, we us@;) = 0.27 by

default.

6.1 Incorporating negative feedback

The vote collector can choose to associate negative fe@os Eliminating links using feedback

back with voters if he believes their votes are maliciou€apacity adjustment cannot reduce the attack capacity to
Feedback may be performed for a very small set bélowe, since each link is assigned a minimum capacity
objects-for example, when the collector finds out that aalue of one. To further reduces, we eliminate those
object is a bogus file or a virus. links that received high amounts of negative feedback.
SumUp keeps track of a penalty valge, for each link ~ We use a heuristic for link elimination: we remove a
7 in the trust network. For each voter receiving negativiek if its penalty exceeds a threshold value. We use a de-
feedback, SumUp increments the penalty values for ult threshold of five. Since we already prune the trust
links along the path to that voter. Specifically, if the linkietwork (Section 5.3) before performing capacity assign-
being penalized has capacity, SumUp increments thement, we add back a previously pruned link if one exists
link’s penalty byl /¢;. Scaling the increment by is intu-  after eliminating an incoming link. The reason why link
itive; links with high capacities are close to the vote coklimination is useful can be explained intuitively: if adve
lector and hence are more likely to propagate some bogasies continuously cast bogus votes on different objects
votes even if they are honest links. Therefore, SumUp imwver time, all attack edges will be eliminated eventually.
poses a lesser penalty on high capacity links. On the other hand, although an honest user might have
It is necessary to penalizl links along the path in- one of its incoming links eliminated because of a down-
stead of just the immediate link to the voter because tistiteam attacker casting bad votes, he is unlikely to expe-
voter might be a Sybil identity created by some other atence another elimination due to the same attacker since
tacker along the path. Punishing a link to a Sybil identithe attack edge connecting him to that attacker has also
is useless as adversaries can easily create more such linken eliminated. Despite this intuitive argument, there al
This way of incorporating negative feedback is inspiraglays exist pathological scenarios where link elimination
by Ostra [18]. Unlike Ostra, SumUp uses a customizaffects some honest users, leaving them with no voting



Network Nodes | Edges| Degree Directed? = 1.6
%1000 | %1000 | 50%(90%) F L.l
YouTube [18] 446 | 3,458 2 (12) No o
Flickr [17] 1,530 | 21,399 1 (15) Yes 3 b2
Synthetic [24]| 3000 | 24,248 | 6 (15) No g 1
Table 1: Statistics of the social network traces or synthetic Z 0.8
model used for evaluating SumUp. All statistics are for the s 0.6
strongly connected component (SCC). > s
power. To address such potential drawbacks, we re-enac% 02l YouTube —— |
eliminated links at a slow rate over time. We evaluate theg ‘ Synthet 1o
effect of link elimination in Section 7. = o001 0.01 0.1
Nunmber of honest voters / total nodes
7 Evaluation Figure 4:The average capacity per attack edge as a function
9 g pacity p g

of the fraction of honest nodes that vote. The average dgpaci

In this section, we demonstrate SumUp’s security progsy attack edge remains closelteven if1,/10 of honest nodes
erty using real-world social networks and voting tracegste.

Our key results are:
1. For all networks under evaluation, SumUp bounds
the average number of bogus votes collected to be A2~ Sybil-resilience of the basic design
more thane 4, while being able to collect-90% of

honest votes when less that of honest users vote.The main goal of SumUp is to limit attack capacity while
2. By incorporating feedback from the vote collectog|iowing honest users to vote. Figure 4 shows that the
SumUp dramatically cuts down the attack capacifyerage attack capacity per attack edge remains close to
for adversaries that continuously cast bogus votes; even when the number of honest voters approaches
3. We apply SumUp to the voting trace and social nefgy;,. Furthermore, as shown in Figure 5, SumUp man-
work of Digg [1], a news aggregation site that usegyes to collect more tha#0% of all honest votes in all
votes to rank user-submitted news articles. Sumidgtworks. Link pruning is disabled in these experiments.
has detected hundreds of suspicious articles that hgyf three networks under evaluation have very different
been marked as “popular” by Digg. Based on magizes and degree distributions (see Table 1). The fact that
ual sampling, we believe at least 50% of suspiciou§ three networks exhibit similar performance suggests
articles found by SumUp exhibit strong evidence fat Sumup is robust against the topological details. Since
Sybil attacks. SumUp adaptively sets, . in these experiments, the re-
7.1 Experimental Setup sults also confirm that adaptation works well in fino!ing a
Cyax that can collect most of the honest votes without

For the evaluation, we use a number of network datasgignificantly increasing attack capacity. We point out that

from different online social networking sites [17] as Welhq resyits in Figure 4 correspond to a random vote collec-
as a synthetic social network [24] as the underlying t'ygfy o an unlucky vote collector close to an attack edge,
network. SumUp works for different types of trust neéfe may experience a much larger than average attack ca-
works as long as an attacker cannot obtain many attTﬁ?,ity. In personalized vote collection, there are few un-
edges easily in those networks. Table 1 gives the stafjgsyy collectors. These unlucky vote collectors need to

tics of various datasets. For undirected networks, we tredkb their own feedback on bogus votes to reduce attack
each link as a pair of directed links. Unless explicitly MeRapacity.

tioned, we use the YouTube network by default.

To evaluate the Sybil-resilience of SumUp, we inject Benefits of pruning: The link pruning optimization, in-
ea = 100 attack edges by adding) adversarial nodestroduced in Section 5.3, further reduces the attack capac-
each with links fromL0 random honest nodes in the netity by capping the number of attack edges an adversarial
work. The attacker always casts the maximum bogus votexle can have. As Figure 6 shows, pruning does not af-
to saturate his capacity. Each experimental run involviest the fraction of honest votes collected if the threshold
a randomly chosen vote collector and a subset of nodks ... is greater than 3. Figure 6 represents data from
which serve as honest voters. SumUp adaptively adjutte YouTube network and the results for other networks
Chaz UsSing an initial value ofil00 andp = 0.5. By de- are similar. SumUp uses the default threshalg (.-cs)
fault, the threshold of allowed non-greedy step2lisWe of 3. Figure 7 shows that the average attack capacity is
plot the average statistic across five experimental runggireatly reduced when adversarial nodes have more than 3
all graphs. In Section 7.6, we apply SumUp on the reattack edges. Since pruning attempts to restrict each node
world voting trace of Digg to examine how SumUp cato at most 3 incoming links, additional attack edges are
be used to resist Sybil attacks in the wild. excluded from vote flow computation.
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Figure 5:The fraction of votes collected as a function of fracfor non-greedy steps. More tha% votes are collected even
tion of honest nodes that vote. SumUp collects more 88 With a small threshold1() for non-greedy steps.

votes, everl /10 honest nodes vote.
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Figure 9:The running time of one vote collector gathering up
to 1000 votes. The Ford-Fulkerson max-flow algorithm takes
seconds to collect 1000 votes for the YouTube graph.

7.3 Effectiveness of greedy search

SumUp uses a fast greedy algorithm to calculate approx-
imate max vote flows to voters. Greedy search enables
SumUp to collect a majority of votes while using a small
threshold {) of non-greedy steps. Figure 8 shows the frac-
tion of honest votes collected for the pruned YouTube
graph. As we can see, with a small threshold of 20, the
fraction of votes collected is more th&n%. Even when
disallowing non-greedy steps completely, SumUp man-
ages to collect- 40% of votes.

Figure 9 shows the running time of greedy-search for
different networks. The experiments are performed on
a single machine with an AMD Opteron 2.5GHz CPU
and 8GB memory. SumUp takes aroufmls to collect
1000 votes from a single vote collector on YouTube and
Flickr. The synthetic network incurs more running time as
its links are more congested than those in YouTube and
Flickr. The average non-greedy steps taken in the syn-

Figure 7:Average attack capacity per attack edge decreasegi@stic network is6.5 as opposed t0.8 for the YouTube
the number of attack edges per adversary increases.

graph. Greedy-search dramatically reduces the flow com-
putation time. As a comparison, the Ford-Fulkerson max-
flow algorithm require$0 seconds to collect 1000 votes
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Figure 10:Average attack capacity per attack edge as a functibiigure 11:The change in attack capacity as adversaries contin-

of voters. SumUp is better than SybilLimit in the averageecas uously cast bogus votes (YouTube graph). Capacity adjugtme
and link elimination dramatically reducgs while still allowing

for the YouTube graph. SumUp to collect more thas0% of the honest votes.

7.5 Benefits of incorporating feedback

7.4 Comparison with SybilLimit We evaluate the benefits of capacity adjustment and link
elimination when the vote collector provides feedback
Sybl”.lmlt is a node admission prOtOC()l that |everages t% the bogus votes collected. Figure 11 Corresponds to
trust network to allow an honest node to accept other hqﬁe worst case scenario where one of the vote collec-
est nodes with high probability. It bounds the number @dr's four outgoing links is an attack edge. At every time
Sybil nodes accepted to l&log n). We can apply Sybil- step, there are 400 random honest users voting on an ob-
Limit for vote aggregation by letting each vote collectgect and the attacker also votes with its maximum capac-

compute a fixed set of accepted users based on the tfiysivhen collecting votes on the first object at time step
network. Subsequently, a vote is collected if and only if it adaption results i — 2w _— 3900 because

comes from one of the accepted users. In contrast, SumPp_ 4. P T s
v T k)

i _ = 0.5,z = 1/4. Therefore, the attacker man-
does not calculate a fixed set of allowed users; rathergfos 1o casCynar = 800 votes and outvote honest users.

dynamically determines the set of voters that count towakie incorporating the vote collector’s feedback aftes th
each object. Such dynamic calculation allows SumUP fpg; time step, the adjacent attack edge incurs a penalty
settle on a small’;;,. while still collecting most of the ¢ | \vhich results in drastically reduced, (97). If the
honest votes. A small’,,,, allows SumUp to bound at-y,qte collector continues to provide feedback on malicious
tack capacity by 4. votes, 90% of attack edges are eliminated after only 12
Figure 10 compares the average attack capacitytiife steps. After another 10 time steps, all attack edges
SumUp to that of SybilLimit for the un-pruned YouTubére eliminated, reducin@G4 to zero. However, because of
network. The attack capacity in SybilLimit refers to th@ur decision to slowly add back eliminated links, the at-
number of Sybil nodes that are accepted by the vote ctick capacity doesn’'t remains at zero forever. Figure 11
lector. Since SybilLimit aims to accept nodes instead 8fs0 shows that link elimination has little effects on hon-
votes, its attack capacity remaifi§log n) regardless of est nodes as the fraction of honest votes collected always
the number of actual honest voters. Our implementatitgmains above0%.
of SybilLimit uses the optimal set of parameteus-£ 15, . : ; ;
r = 3000) we determined manually. As Figure 10 shows7,'6 Defending Digg against Sybil attacks
while SybilLimit allows 30 bogus votes per attack edgeln this section, we ask the following questions: Is there
SumUp results in approximately 1 vote per attack edgwidence of Sybil attacks in real world content voting sys-
when the fraction of honest voters is less thafh. When tems? Can SumUp successfully limit bogus votes from
all nodes vote, SumUp leads to much lower attack c3ybil identities? We apply SumUp to the voting trace and
pacity than SybilLimit even though both have the sans®cial network crawled from Digg to show the real world
O(logn) asymptotic bound per attack edge. This is duEenefits of SumUp.
to two reasons. First, SumUp’s bound bf+ logn in Digg [1] is a popular news aggregation site where any
Theorem 5.1 is a loose upper bound of the actual avezgistered user can submit an article for others to vote on.
age capacity. Second, since links pointing to lower-lev&Ipositive vote on an article is calleddigg. A negative
nodes are not eligible for ticket distribution, many inconvote is called dury. Digg marks a subset of submitted ar-
ing links of an adversarial nodes have zero tickets and thicdes as “popular” articles and displays them on its front
are assigned capacity of one. page. In subsequent discussions, we use the tpops



Number of Nodes 3,002,907 1 —

Number of Edges 5,063,244 o g | PoPUIAr articles

Number of Nodes in SCC 466,326 o8l

Number of Edges in SCC 4,908,958 0.7 |

Out degree avg(50%, 90%) 10(1, 9) 0.6

In degree avg(50%, 90%) 10(2, 11) B osf

Number of submitted (popular) articles| 6,494,987 0.4l

2004/12/01-2008/09/21 (137,480) 03l

Diggs on all articles o2l

avg(50%, 90%) 24(2, 15) o1l

Diggs on popular articles o ‘ ‘

avg(50%, 90%) 862(650, 1810) 0 0.2 0.4 0.6 0.8 1
Hours Since Submission before a pOpU ar di ggs collected by Sump / diggs before becom ng popul ar
article is marked as popular.

avg (50,%,90%) 16(13, 23) Figure 13:The distribution of the fraction of diggs collected by
Number of submitted (popular) articles| 38,033 SumUp over all diggs before an article is marked as popular.
with bury data available (5,794)

2008/08/13-2008/09/15

Table 2: Basic statistics of the crawled Digg dataset. Thf;a':Ont page of Digg which has several million page views

strongly connected component (SCC) of Digg consists BET day. Our goal is to apply SumUp on the voting trace
466,326 nodes. to reduce the number of successful attacks on the popu-

larity marking mechanism of Digg. Unfortunately, unlike
1 ‘ — : ‘ experiments done in Section 7.2 and Section 7.5, there is
; no ground truth about which Digg users are adversaries.
0.8 {f 1 Instead, we have to use SumUp itself to find evidence of
attacks and rely on manual sampling and other types of
0.6 | 1 data to cross check the correctness of results.
8 Digg’s popularity ranking algorithm is intentionally not
] | revealed to the public in order to mitigate gaming of the
system. Nevertheless, we speculate that the number of
diggs is a top contributor to an article’s popularity status
‘ ‘ ‘ R H - — Figure 12 shows the distribution of the number of diggs
0 50 100 150 200 250 300 350 400 an article received before it was marked as popular. Since
Number of di ggs more than 90% of popular articles are marked as such
Figure 12:Distribution of diggs for all popular articles beforewithin 24 hours after submission, we also plot the number
being marked as popular and for all articles withinhours after of diggs received within 24 hours of submission for all ar-
submission. ticles. The large difference between the two distributions
indicates that the number of diggs plays an important role
ular or popularity only to refer to the popularity statusin determining an article’s popularity status.
of an article as marked by Digg. A Digg user can cre- |nstead of simply adding up the actual number of diggs,
ate a “follow” link to another user if he wants to browsgyhat if Digg uses SumUp to collect all votes on an article?
all articles submitted by that user. We have crawled Digge use the identity of Kevin Rose, the founder of Digg,
to obtain the voting trace on all submitted articles Sin% the vote collector to aggregate all d|ggs on an article
Digg’s launch (2004/12/01-2008/09/21) as well as thgxfore it is marked as popular. Figure 13 shows the distri-
complete “follow” network between users. Unfortunatelyution of the fraction of votes collected by SumUp over
unlike diggs, bury data is only available as a live streamyj diggs before an article is marked as popular. Our pre-
Furthermore, Digg does not reveal the user identity thabus evaluation on various network topologies suggests
cast a bury, preventing us from evaluating SumuUp’s feegat SumUp should be able to collect at least 90% of all
back mechanism. We have been streaming bury data sigés. However, in Figure 13, there are a fair number of
2008/08/13. Table 2 shows the basic statistics of the Dlggpmar articles with much fewer than the expected frac-
“follow” network and the two voting traces, one with buryjon of diggs collected. For example, SumUp only man-
data and one without. Although the strongly connect@ges to collect less than 50% of votes for 0.5% of popu-
component (SCC) consists of onl% of total nodes, [ar articles. We hypothesize that the reason for collecting
88% of votes come from nodes in the SCC. fewer than the expected votes is due to real world Sybil

There is enormous incentive for an attacker to get a s@§tacks.
mitted article marked as popular, thus promoting it to the Since there is no ground truth data to verify whether




Threshold of the 20% | 30% | 40% | 50% 250
fraction of collected diggs g
# of suspicious articles 41 | 131 | 300 | 800 S 200 |
Advertisement 5 4 2 1 g
Phishing 1 0 0 0 g 150 |
Obscure political articles 2 2 0 0 =
Many newly registered voters 11 7 8 10 2 100
Fewer than 50 total diggs 1 3 6 4 ;
No obvious attack 10 14 14 15 5 sof
Table 3:Manual classification 080 randomly sampled suspi- ~ © = 2 gfz burles O?f: = becg‘meng poPu(')‘a; —
cious articles. We use different thresholds of the fractibool- di ggs col l ected by Sunlp / diggs before becom ng popul ar

lected diggs for marking suspicious articles. An articlizeled Figure 14:The average number of buries an article received
as having many new voters3f 30% of its votes are from users after it was marked as popular as a function of the fraction of

who registered on the same day as the article’s submissien daiggs collected by SumUpeforeit is marked as popular. The

Figure covers, 794 popular articles with bury data available.

few collected diggs are indeed the result of attacks, we
resort to manual inspection. We classify a popular art'%‘?nce88%

as suspicious if its fraction of diggs collected is less th 0 . o
; pect onlyl2% of diggs to originate from the rest of the
a given threshold. Table 3 shows the result of manua ¥twork, which mostly consists of nodes with no incom-

inspecting 30 random articles ,OUt of all suspicious arﬂig follow links. For most suspicious articles, the reason
cIes._The random samples fordﬁferentthresholds are cho=, SumUp collecting fewer than expected diggs is due
sen independently. Th(_ere are a ”“”_‘be_r of obwous bog An unusually large fraction of votes coming from out-

articles such as advertisements, phishing articles and 9% the scc component. Since Digg’s popularity mark-

s<f:urr]e porllmcal OpINIONS. ?I)f Ithe refmalr_ung,ov(;//e f|rf1d manmg algorithm is not known, attackers might not bother to
of them have an unusually large fractian30%) of new connect their Sybil identities to the SCC or to each other.

voters who registered on the same day as the article’'s s, erestingly, we found 5 suspicious articles with sophis-

mission time. Some articles also have very few total d'ggéated voting patterns where one voter is linked to many

since bec_ommg popular, a rare event since an article YR¥entities ¢ 30) that also vote on the same article. We be-
cally receives hundreds of votes after being shown on

front page of Digg. We find no obvious evidence of a e the many identities behind that single voter are Jikel

. . §ybi| identities because those identities were all created
tack for roughly half of the sampled articles. Interview,

: . "WSn the same day as the article’s submission. Additionally,
with Digg attackers [10] reveal that, although there IS10se identities all have similar usernames.

fair amount of attack activities on Digg, attackers do not

usually promote obviously bogus material. This is likel@ SumUp in a Decentralized Setting
due to Digg being a highly monitored system with fewer

than a hundred articles becoming popular every day. lven though SumUp is presented in a centralized setup
stead, attackers try to help paid customers promote ngkich as a content-hosting Web site, it can also be imple-
mal or even good content or to boost their profiles withimented in a distributed fashion in order to rank objects
the Digg community. in peer-to-peer systems. We outline one such distributed
design for SumUp. In the peer-to-peer environment, each
Adde and its corresponding user is identified by a self-
Yénerated public key. A pair of users create a trust link
elationship between them by signing the trust statement
ith their private keys. Nodes gossip with each other or
Ekform a crawl of the network to obtain a complete trust

diggs SumUp collected before it was marked as popul etwork between any pair of public keys. This is differ-
As Figure 14 reveals, the higher the fraction of diggs cqly t from Ostra [18] and SybilLimit [26] which address

; ; hard bl fd tralized routi h h
lected by SumUp, the fewer bury votes an article receiv gee arder probiem ot decentrafized roufing where eac

fer bei ked lar. A : th r only knows about a small neighborhood around him-
arter being marked as popuiar. ASSUMIng most bury VOig§¢ i e tryst graph. In the peer-to-peer setup, each user
come from honest users that genuinely dislike the artic

| ber of b oS | d indicator that t aturally acts as his own vote collector to aggregate votes
alarge numper of bury voles 1S a good indicator tha B?\d compute a personalized ranking of objects. To obtain
article is of dubious quality.

all votes on an object, a node can either perform flooding
What are the voting patterns for suspicious articleflike in Credence [25]) or retrieve votes stored in a dis-

diggs come from nodes within the SCC, we

As further evidence that a lower than expected fracti
of collected diggs signals a possible attack, we exam
Digg’s bury data for articles submitted after 2008/08/1
of which 5794 are marked as popular. Figure 14 plots t
correlation between the average number of bury votes
an articleafter it became popular vs. the fraction of th



tributed hash table. In the latter case, it is important tHat] KLeinserg, J. Authoritative sources in a hyperlinked environ-
the DHT itself be resilient against Sybil attacks. Recent ment. InProc. 9th ACM-SIAM Symposium on Discrete Algorithms

work on Sybil-resilient DHTSs [5, 14] addresses this chal- (1998).

Ienge. [13] LESKOVEC, J., LANG, K., DASGUPTA, A., AND MAHONEY,
M. W. Statistical properties of community structure in largp-

cial and information networks. Ifth international conference on

9 Conclusion WWW(2008).

This paper presented SumUp’ a content Votlng Systglﬂ LESNlEWSKl.'LAAS, C. A sybil-proof one-hop dht. ldst Work-
that leverages the trust network among users to defeng SNoP on Secial Network Syste(@§08).

: : : : I18] LEVIEN, R., AND AIKEN, A. Attack-resistant trust metrics for
against Sybil attacks. By using the technique of adaptﬁé public key certification. Ir5SYM’98: Proceedings of the 7th con-

vote ﬂOV_V aggregation, S_umUp aggregate; a Cf)”eCtion Of ference on USENIX Security Symposium, 19B8rkeley, CA,
votes with strong security guarantees: with high proba- USA, 1998), USENIX Association, pp. 18-18.
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by the number of attack edges while the number of hon- file sharing systems. IEEEE Infocom(2005).
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igg: SumUp detected many suspicious articles marked g ement Conference (IMG2007).
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Sybil attacks on many of these suspicious articles. Ostra: Leveraging trust to thwart unwanted communication.
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