
3

A New Approach to Dynamic Self-Tuning
of Database Buffers

DINH NGUYEN TRAN

New York University

PHUNG CHINH HUYNH

Microsoft Corporation

and

Y. C. TAY and ANTHONY K. H. TUNG

National University of Singapore

Current businesses rely heavily on efficient access to their databases. Manual tuning of these
database systems by performance experts is increasingly infeasible: For small companies, hiring
an expert may be too expensive; for large enterprises, even an expert may not fully understand the
interaction between a large system and its multiple changing workloads. This trend has led major
vendors to offer tools that automatically and dynamically tune a database system.

Many database tuning knobs concern the buffer pool for caching data and disk pages. Specifically,
these knobs control the buffer allocation and thus the cache miss probability, which has direct
impact on performance.

Previous methods for automatic buffer tuning are based on simulation, black-box control, gradi-
ent descent, and empirical equations. This article presents a new approach, using calculations with
an analytically-derived equation that relates miss probability to buffer allocation; this equation fits
four buffer replacement policies, as well as twelve datasets from mainframes running commercial
databases in large corporations.

The equation identifies a buffer-size limit that is useful for buffer tuning and powering down
idle buffers. It can also replace simulation in predicting I/O costs. Experiments with PostgreSQL
illustrate how the equation can help optimize online buffer partitioning, ensure fairness in buffer
reclamation, and dynamically retune the allocation when workloads change. It is also used, in
conjunction with DB2’s interface for retrieving miss data, for tuning DB2 buffer allocation to achieve
targets for differentiated service.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of
Systems; H.4.m [Information Systems Applications]: Miscellaneous

This work was supported by National University of Singapore ARF grant R-146-000-072-112.
Authors’ addresses: D. N. Tran, New York University, 547 LaGuardia PI., New York, NY 10012;
P. C. Huynh, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399; Y. C. Tay
(corresponding author), A. K. H. Tung, National University of Singapore, 21 Lower Kent Ridge
Road, Singapore 119077; email: dcstayyc@nus.edu.sg.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1550-4859/2008/05-ART3 $5.00 DOI 10.1145/1353452.1353455 http://doi.acm.org/
10.1145/1353452.1353455

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:2 • D. N. Tran et al.

General Terms: Design, Performance

Additional Key Words and Phrases: Buffer allocation, miss probability, autonomic computing

ACM Reference Format:
Tran, D. N., Huynh, P. C., Tay, Y. C., and Tung, A. K. H. 2008. A new approach to dynamic self-
tuning of database buffers. ACM Trans. Storage 4, 1, Article 3 (May 2008), 25 pages. DOI =10.
1145/1353452.1353455 http://doi.acm.org/ 10.1145/1353452.1353455

1. INTRODUCTION

Most business processes require access to some databases. Competitive pres-
sures require these accesses to be quick, so the database systems must be well
tuned.

Traditionally, database tuning is done manually by experts (e.g., database
administrators), but this is becoming increasingly infeasible: With the large
drop in hardware prices and huge increase in capacity, database systems have
grown bigger and more complicated. Furthermore, the workload may be het-
erogeneous (e.g., server consolidation), dynamic (e.g., Web-driven), or unknown
(e.g., outsourcing service). Human expertise for tuning such systems can be hard
to find, or prohibitively expensive. This has led major vendors to offer software
tools for automatic and dynamic tuning: Automatic Database Diagnostic Mon-
itor for Oracle [Dias et al. 2005], Resource Advisor for SQL Server [Narayanan
et al. 2005], and Self-Tuning Memory Manager for DB2 [Storm et al. 2006].

As evident from the tuning aids provided by these three tools, a key issue
is the allocation of memory to the buffer pool (or simply buffer) for caching
data and disk pages. Buffer tuning determines Pmiss, the probability that some
referenced object is not in the cache, thus degrading performance.

This article, addresses three issues in buffer tuning as described next.

(1) Buffer Size M. Despite the dramatic price drop for memory, buffer size re-
mains an issue, as there are always competing demands for memory space
from code, working storage (for sorting, hashing, etc.), metadata, network-
ing, etc. [Lightstone et al. 2002]. There has also been recent interest in
powering down excess memory [Cai and Lu 2005].

(2) Buffer Share Mi. A large enterprise may run concurrently several work-
loads with diverse characteristics (short interactive transactions, long
queries for decision support, etc.) and different performance goals (e.g., re-
sponse time versus throughput). Similarly, an outsourcing service provider
may host (on the same machine) multiple client databases, with different
service-level agreements. For such reasons, a system that runs k different
workloads may partition a buffer of size M into smaller sizes M1, . . . , Mk
(so M = M1 + · · · + Mk), one for each workload. By buffer allocation, we
refer to both size M and share Mi.

(3) Dynamic Self-Tuning. Workloads are constantly changing, by the month
(system upgrade), hour (e.g., daily work cycle), and minute (e.g., flash
crowds). Hence, buffer size and share need to be tuned automatically and
dynamically.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:3

The impact of buffer allocation on miss probability Pmiss is through a complex
interaction between the workload’s reference pattern and the buffer manage-
ment policy, and affected by innumerable factors.

To illustrate, the reference pattern depends on how data contention is re-
solved by the concurrency control, whether multiquery optimization pipelines
the subexpression evaluation, the design and usage of indices, whether there
is disk striping and prefetching, how the database changes over time, what
the hardware architecture and software versions are, and how the whole lot is
configured.

These myriad factors and their complex interaction make it difficult to pre-
dict how a change in buffer allocation affects Pmiss. Automatic and dynamic
buffer tuning is thus a hard problem.

1.1 Current Techniques

Present tuning techniques use simulation, black-box control, gradient descent,
and empirical equations.

Trace simulation is used in current tuning software for commercial systems
to estimate I/O costs for different buffer allocations [Dias et al. 2005; Narayanan
et al. 2005; Storm et al. 2006]. However, traces may not be available and simula-
tion code is hard to modify (e.g., when there is a change in index organization).

Black-box control is an iterative loop that treats the buffer as an unknown
function from buffer allocation to Pmiss [Ko et al. 2003; Lu et al. 2002]. Conver-
gence may not be guaranteed, or may be slower than dynamic changes in the
workload.

Gradient descent is a popular iterative technique [Chung et al. 1995; Ko
et al. 2003; Suh et al. 2004; Thiébaut et al. 1992; Tian et al. 2003] that uses a
measured gradient �Pmiss

�M to direct the change in M . However, Pmiss fluctuation
can cause large gradient errors, thus destabilizing the convergence.

Empirical equations have no theoretical basis; they are chosen for their abil-
ity to fit data [Hsu et al. 2001; Storm et al. 2006; Tsuei et al. 1997]. One widely-
used example is Belady’s power law [Chung et al. 1995; Tian et al. 2003], but
that is known to give a poor fit for database workloads [Brown et al. 1996].
Moreover, although there is a limit to how much buffer space is needed by any
workload, these equations do not identify such an upper bound.

We will say more about these techniques in later sections.

1.2 Our Approach

The main contributions of this article are as follows:

(1) We present a new approach to buffer tuning that is based on a buffer miss
equation. Our technique is to fit available data with the equation, then use
the equation for tuning calculations. Unlike empirical equations, the buffer
miss equation is derived from an analytical model (see Appendix), and it
identifies an upper bound M ∗ on buffer size that is useful for tuning.

(2) We validate the equation with four buffer replacement policies (Section 2.2)
and twelve reference traces from mainframe commercial databases in large

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:4 • D. N. Tran et al.

corporations (Section 2.3). This ability to fit multiple policies and patterns
is nontrivial.

(3) We demonstrate how the equation can be used to:
(a) estimate I/O costs from Pmiss data when no reference trace is available

for simulation (Section 3.2);
(b) dynamically partition a buffer to minimize total misses (Section 4.1);
(c) dynamically and fairly reclaim and reallocate buffer space when there

is memory pressure or a change in workload (Section 4.2);
(d) rapidly retune a buffer partition (Section 4.3);
(e) improve the gradient-descent method (Section 4.4); and
(f) dynamically adjust buffer allocation to reach a Pmiss target under dif-

ferentiated service (Section 4.4).

The experiments either use instrumented PostgreSQL, or DB2’s interface for
retrieving Pmiss data.

1.3 Overview

In the following, Section 2 introduces the buffer miss equation and validates
it for different replacement policies and several commercial reference traces,
as well as explaining the intuition for its efficacy. Section 3 uses static allo-
cation to demonstrate some basic ideas in using the equation. Section 4 then
demonstrates dynamic self-tuning to minimize miss probability, and shows how
memory can be reclaimed and reallocated in a fair way. The final experiment
shows how our approach can help, or replace, the widely-used gradient-descent
method. Section 5 relates this article to previous work, and Section 6 con-
cludes with a summary. The Appendix describes the underlying mathematical
derivation.

Note that this article is not about the buffer miss equation itself, but on its ap-
plication in buffer tuning. To draw an analogy, Floyd et al.’s paper on equation-
based congestion control [Floyd et al. 2000] is not about the TCP equation (that
was derived from a previous paper [Padhye et al. 2000]), but on applying that
equation to control network traffic.

2. EQUATION AND VALIDATION

The buffer tuning techniques in this article are based on a buffer miss equation
that we introduce in Section 2.1. We validate it for different buffer replacement
policies in Section 2.2 and with various commercial workloads in Section 2.3, be-
fore explaining it in Section 2.4. The equation requires Pmiss data to determine
its parametric values, and Section 2.5 discusses possible sources for this data.

2.1 Buffer Miss Equation

The buffer miss equation is

Pmiss = 1
2

(H +
√

H2 − 4)(P∗ + Pc) − Pc, (1)

where H = 1 + M ∗ + Mb

M + Mb
, for M ≤ M ∗.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:5

Table I. Glossary of Notation

M buffer size
Mi size of buffer share for workload i, M = M1 + · · · + Mk

Pmiss probability of a buffer miss
P∗ probability of a cold miss (i.e., first reference to a page)
M ∗ smallest buffer size for which Pmiss = P∗
Mb size of non-buffer memory occupied by database (Figure 11)
Pc parameter that controls convexity of Pmiss curve
μ target Pmiss for differentiated service

Fig. 1. Comparing our equation to previous equations.

(Pmiss = P∗ for M > M ∗.) P∗, Pc, M ∗, and Mb are parameters that depend on
the transaction workload, buffer management, database instance, hardware
configuration, etc. These four parameters are minimal in the following sense
(Table I lists some notation used in this article).

—P∗ is the probability of a cold miss (i.e., the first reference to a page). It is
an inherent characteristic of every reference pattern, and any equation for
Pmiss must account for it.

—When Pmiss is plotted against M , they generally trace a decreasing curve, as
illustrated in Figure 1. Previous equations for Pmiss models this decrease as
continuing forever [Belady 1996; Hsu et al. 2001; Storm et al. 2006; Tsuei
et al. 1997]. This cannot be so: There must be some M = M ∗ at which
Pmiss reaches its minimum P∗, as illustrated in Figure 1(b). Hence, our
equation is the first to model this feature of Pmiss behavior for database
workloads.

—Memory for a database system is used for various purposes. Other than the
buffer pools for caching data and disk pages, space is also needed for sort-
ing, hashing, locks, code, etc. [Storm et al. 2006]. The memory used for such
purposes is modeled by Mb (see Figure 11 in the Appendix).

—Pmiss is the result of interaction between the reference pattern and buffer
management; the latter covers replacement policy, prefetching, record cre-
ation, etc., and these are modeled by Pc. In effect, Pc controls the convexity
of the Pmiss curve.

Suppose we have a set of (M , Pmiss) data points. If P∗ is known (the case for
Figure 2 in Section 2.2), we use regression [Tay and Zou 2006] to find values for
M ∗, Mb, and Pc to give a best fit between the points and the curve defined by the

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:6 • D. N. Tran et al.

Fig. 2. The buffer miss equation holds for different replacement policies. (TPC-C uses randomiza-
tion in generating its transactions, so different experiments may have different P∗ for cold misses.)
Note the correspondence between convexity and Pc.

buffer miss equation. If P∗ is not known (the case for Figure 3 in Section 2.3),
we search iteratively for a P∗ value that gives a best fit.

Other analytical (nonempirical) models for cache misses in the literature all
impose some restrictions on either the replacement policy (e.g., LRU [Dan and
Towsley 1990]) or the reference pattern (e.g., independence [Dan et al. 1995]). In
contrast, our equation has no such restriction: Changes in replacement policy
or reference locality only change the parametric values, not the equation. We
next validate this claim.

2.2 Validation: Different Policies

We modify TPCC-UVa [Llanos 2006], an open-source implementation of the
TPC-C benchmark [2006], to generate workloads to PostgreSQL version 8.0.0.
The experiments are run on a Pentium 2.8 GHz Linux workstation. Our
database size is 520MB, stored in an IBM SCSI 10000RPM hard disk. The
default page size of PostgreSQL is 8KB.

We also implement LRU (least recently used), FIFO (first-in-first-out), and
random replacement polices for PostgreSQL. For each policy, including the orig-
inal 2Q policy of PostgreSQL-8.0.0, we run the TPC-C workload with different
buffer-pool sizes.

Figure 2 plots measurements for a workload of 5 terminals, each generating
15 NEW-ORDER transactions to 1 warehouse. For each policy, the equation
provides a smooth curve that gives a close fit for its data points.

Statisticians measure the quality of a regression fit by the coefficient of de-
termination R2; a perfect fit gives R2 = 1. The R2 values in Figure 2 exceed
0.97, thus indicating an excellent fit for each curve.

The interaction between replacement policy and reference pattern is very
hard to model; previous analyses of LRU-K and GCLOCK, for example, were
based on the independent reference model, which is a strong assumption that
does not take into account temporal and spatial locality of references [O’Neil
et al. 1999; Xi et al. 2001]. It is therefore significant that the buffer miss equation

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:7

is able to model various replacement policies by simply changing its parametric
values.

2.3 Validation: Commercial Workloads

Many validation studies in the literature are based on simulation with TPC
benchmarks, like we have done in Figure 2. However, these benchmarks are
synthetic.

To stress test the equation’s ability to fit different workloads, we use Hsu
et al.’s data [2001]. That data was generated from trace simulation, where the
traces were recorded on IBM mainframes with industrial-strength DB2/MVS
for 12 commercial workloads from “ten of the world’s largest corporations” (in-
cluding aerospace, banking, consumer goods, direct mail marketing, financial
services, insurance, retail, telecommunications, and utilities).

We can see from Figure 3 that our equation gives very good fit for most of
the workloads. It also works well with the nonsmooth shape of measured data
such as bank and retail. Most of the R2 values exceed 0.95.

Note that by changing the parametric values, the equation is able to assume
very different shapes to fit the data.

2.4 Intuition and Derivation

How is it possible that one equation with just four parameters is able to fit such
a variety of replacement policies and reference patterns? To understand this,
we briefly present here its underlying intuition.

We derive Eq. (1) from the following page fault equation [Tay and Zou 2006].

P fault = 1
2

(H +
√

H2 − 4)(P∗ + Pc) − Pc,

where H = 1 + M ∗
RAM − M0

MRAM − M0
, for M ≤ M ∗

RAM

Here, P fault is the probability of a page fault, MRAM is the size of random access
memory (RAM), and P∗, Pc, M ∗

RAM, and M0 are parameters. The page fault
equation is based on the following references+replacement invariant [Tay and
Zou 2006]. (

1 − 1
r

) (
1 + tRAM

tdisk

)
≈ 1, (2)

where r is the average number of times a page is read from disk, tRAM is the
average time a page stays in memory before eviction, and tdisk is the average
time between a page’s eviction and its reentry into main memory.

The invariant (2) captures the following intuition (see Figure 4): It is likely
for r to be small and tRAM

tdisk
to be large (as when there is little memory pressure), or

for r to be large and tRAM
tdisk

to be small (as when there is much memory pressure);
and it is unlikely for r and tRAM

tdisk
to be both small or both large. This is a general

observation that should hold for any workload and any replacement policy,
except for some worst-case scenarios.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:8 • D. N. Tran et al.

Fig. 3. The buffer miss equation holds for various commercial workloads. Note how by changing
the parametric values, the same equation can assume very different shapes.

Fig. 4. Intuition for the references + replacement invariant: Likely and unlikely scenarios when
workload reference pattern interacts with page replacement policy.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:9

Tay and Zou then derived the page fault equation from the invariant (2) by
applying Little’s law [Jain 1991] to the page flow into and out of memory, and
we derive the buffer miss equation from the page fault equation by focusing on
the buffer pool (see Appendix A.1).

The equation’s ability to fit a variety of patterns and policies thus comes from
the preceding general observation in the invariant.

2.5 Sources of Pmiss Data

The buffer miss equation relies on a set of (M , Pmiss) data to determine its
parametric values. Where do these data points come from?

Case I. (There are Previous Measurements). The system may be running a
familiar production workload, for which there is a record of Pmiss data. Some
systems may also phase in a large change in buffer allocation through incre-
mental changes [Storm et al. 2006], and each such small adjustment in M can
provide a data point.

Case II. (There are No Previous Measurements).

(a) The Replacement Policy Has the Inclusion Property [Mattson et al. 1970].
This property says that the buffer contents for M also includes those for M ′

if M ≥ M ′. For example, LRU and LFU (least frequently used) have this
property (but FIFO does not). For such policies, one can construct a Mattson
stack [Zhou et al. 2004].

Briefly, this is how it works: The stack orders all references made so far
in an epoch by recency; there are also two counters: one for cold misses and
one for the number of references to each stack position. At the end of the
epoch, the counters can be used to calculate Pmiss for any M (in effect, this
is a simulation).

Since the Mattson stack can be used to calculate Pmiss for any M , it might
seem like there’s no longer any need for our equation. This is not so, for the
following reasons.
(1) By fitting the data with our equation, we can do tuning calculations that

cannot be done with the Mattson stack alone. For example, the fairness
criterion for buffer reallocation in Section 4.2 (Eq. (5)) is stated in terms
of the equation’s parameters.

(2) Pmiss values calculated with a Mattson stack can be nonconcave. Con-
cavity is a useful property for optimization problems [Brown et al. 1996;
Zhou et al. 2004]. We can use our equation to fit a concave shape
to the data (Figure 3), and thus facilitate tuning optimizations (see
Section 5).

(3) The equation provides a concise record (just four parameters) of the
Pmiss data, and the stack and counters can be discarded. The next time
this workload is run, we can start with this equation (rather than from
scratch, with no data). The equation can also be archived for offline anal-
ysis of how the Pmiss curve is affected by changes in hardware, software,
and workload.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:10 • D. N. Tran et al.

(b) The Replacement Policy Does Not Have the Inclusion Property.
In practice, most replacement policies do not have the inclusion property. For
example, LRU requires locking and manipulation of the stack, so a lower-cost
approximation like CLOCK is often preferable [Bansal and Modha 2004].
Current versions of PostgreSQL and DB2 use variations of 2Q and GCLOCK,
which do not have the inclusion property.

For such policies, one can do on-the-fly simulation to generate (M , Pmiss)
data points, as follows: The buffer manager contains a simulator for the
replacement policy [Dias et al. 2005; Narayanan et al. 2005; Storm et al.
2006], and logs the references while the system is running at M = B, say.
Once the log is deemed sufficiently long, the manager can run a background
simulation of the policy against the reference trace to get Pmiss data for any
M �= B.

Cost consideration may limit the number of simulated (M , Pmiss) points,
but, as we shall see in Section 4.4, our equation can work effectively with just
a few data points. Besides, the simulation can be scaled back progressively
as more Pmiss measurements become available.

3. STATIC ALLOCATION

We first consider how the buffer miss equation can be used to determine the
buffer size M and to partition it into M1, M2, . . . , Mk . To simplify the introduc-
tion of ideas, we assume these are done statically, using previously collected
Pmiss data (Case I in Section 2.5). We will consider dynamic adjustments in
Section 4.

3.1 Buffer Size M

One contribution of our equation is in identifying the buffer size M ∗ where
Pmiss is reduced to cold misses (see Figure 1). This property can be used for
buffer sizing.

Several papers on buffer allocation start with a given M , then focus on how
much to give to each query [Ng et al. 1995; Yu and Cornell 1991]. But how
big should M be? Memory space is needed for many other purposes: for the
operating system, network connections, metadata, sorting, hashing, etc.

Since any memory beyond M ∗ is not used by the workload, M ∗ is a natural
choice for buffer size M .

Given a set of Pmiss data, one can fit it with the equation to determine M ∗.
For example, if we use just the data points for M < 1200 in Figure 2, curve
fitting gives M ∗ = 2341, 2559, 2818, and 2494 for 2Q, LRU, FIFO, and random,
which are within 13%, 1%, 2%, and 6% (respectively) of the values in Figure 2.
This accuracy is despite the predicted M ∗ values being far from the data points
at M < 1200.

3.2 Reducing M for a Buffer in a Black Box

In contrast to the previous example of extrapolating from the data to estimate
M ∗, one may sometimes need to extrapolate backwards to determine the impact
of reducing from M = Mbig to M = Msmall (e.g., server consolidation).

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:11

Fig. 5. Only the points (from Hsu’s DirMktg2 dataset) inside the range 40000 < M < 80000
are used for regression to get the curve. Backward extrapolation gives accurate predictions for
13000 < M < 40000.

This problem may be made more difficult if the performance analyst has
access to Pmiss measurements but not the reference trace: In practice (e.g., for
proprietary reasons), the database server may be a black box that contains the
buffer, and only the buffer size and the misses that appear as disk reads are
observable.

In particular, the hits are invisible, so it is impossible to tell what misses at
M = Msmall may be generated by the references that are hits at M = Mbig.

Nonetheless, our equation can be used to predict the number of misses at
M = Msmall. Multiplying Eq. (1) by the (unknown) reference length, we get

nmiss = 1
2

(H +
√

H2 − 4)(n∗ + nc) − nc, (3)

where nmiss is number of misses, n∗ the cold misses, and nc the counterpart of
Pc.

By observing the misses from outside the server black box, one can measure
nmiss for known M values, as well as n∗. Once this data is fitted with Eq. (3),
we can use the equation to extrapolate backwards.

Figure 5 illustrates this for Hsu’s DirMktg2 dataset. We use only the nmiss

measurements for 40000 < M < 80000 for curve fitting. The plot shows that the
equation accurately predicts (less than 8% error) the nmiss values for 13000 <

M < 40000.

3.3 Buffer Partition M1, . . . ,Mk

An enterprise may run heterogeneous workloads (e.g., batch and interactive) on
one server, and a service provider may use one machine to host workloads from
different clients. To protect the performance of each workload (so it satisfies
some service-level agreement, say), the buffer size M may have to be partitioned
into buffer pools of size M1, . . . , Mk .

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:12 • D. N. Tran et al.

Fig. 6. Pmiss prediction for buffer partitioning. By fitting miss probability data for each workload,
the equation can be used to predict overall Pmiss for any buffer partition.

Suppose we want to partition M into M1, M2, and M3 for three workloads.
Given three sets of miss probabilities (one for each workload and without the
constraint M1 + M2 + M3 = M), we can fit set i by our equation to get a miss
probability function fi(Mi). We can then predict the aggregate Pmiss by

Pmiss(M1, M2, M3) = w1 f1(M1) + w2 f2(M2) + w3 f3(M3), (4)

where wi is the probability that a data reference belongs to pool i.
To test this idea, we implement multiple buffer pools in PostgreSQL, with

each pool using its own LRU replacement policy. We run an experiment with
three workloads, each with its own database and buffer pool.

The three workloads have 10, 20, and 35 terminals, respectively. Each work-
load has a different mix of TPC-C transactions (NEW-ORDER, PAYMENT,
STOCK-LEVEL, ORDER-STATUS, and DELIVERY) and each terminal com-
mits 30 transactions.

For each workload, we first measure miss probabilities for Mi ≤ 60 pages
and fit the data with the equation to get fi(Mi), as shown in Figure 6. We also
measure the number of references Li for workload i, and estimate wi by wi ≈
Li/(L1 + L2 + L3), without considering how a change in the partition affects wi.

We then run the three workloads concurrently under the constraint M1 +
M2 + M3 = 150, measure the aggregate Pmiss for the buffer, and compare it to
the value predicted with Eq. (4). The results are plotted in Figure 7; among the
55 comparisons, the maximum relative error is 6.4%, and the average relative
error is 1.9%. This accuracy is achieved despite our severe restriction in using
only data from Mi ≤ 60 for fitting the equation.

One can thus accurately locate the partition that optimizes a given objective
function of the workloads’ miss probabilities. For example, our prediction cor-
rectly locates (M1, M2, M3) = (20, 50, 80) as the partition that minimizes Pmiss

for the buffer. Note that we have no data for M3 > 60, thus demonstrating
extrapolation with f3(M3).

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:13

Fig. 7. Comparison between predicted and measured Pmiss for buffer partition. For the 55 com-
parisons, the maximum relative error is 6.4%, and the average relative error is 1.9%.

4. DYNAMIC SELF-TUNING

Having laid the groundwork, we now focus on dynamic self-tuning of the buffer
allocation. Section 4.1 first considers using epochs to make the static allocation
of Section 3 online. Section 4.2 examines how memory can be fairly reclaimed
or reallocated when there is a change in the workload, and Section 4.3 further
considers how this can be done quickly when there are insufficient Pmiss mea-
surements. Section 4.4 then compares our tuning approach to the widely-used
gradient-descent method.

4.1 Epochs and Online Allocation

A basic idea for dynamic tuning is to divide time into rounds [Ko et al. 2003], in-
tervals [Brown et al. 1996], or epochs [Zhou et al. 2004], collecting data for each
epoch and (when there is sufficient data) using measurements from previous
epochs to retune in each epoch.

For example, in the buffer sizing problem of Section 3.1, the data for
M < 1200 may have been obtained in previous epochs, when buffer allocation
was changed as some concurrent workloads terminated or started up. Some
system may also impose a limit on transferring memory from one workload to
another [Storm et al. 2006], so that the transfer takes multiple epochs, each
thus generating another data point.

If the workload is changing continuously, then a standard technique is to
define a sliding window of recent epochs, and to discard old measurements that
slide out of the window.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:14 • D. N. Tran et al.

Table II. Using the Buffer Miss Equation to Minimize
Aggregate Pmiss

Epoch Partition Pmiss
1 Pmiss

2 Pmiss
3 Pmiss

1 (24,24,24) 0.437 0.429 0.416 0.434
2 (40,40,40) 0.347 0.358 0.360 0.350
3 (50,50,50) 0.311 0.347 0.353 0.320
4 (60,60,60) 0.280 0.328 0.330 0.292
5 (30,30,30) 0.377 0.397 0.393 0.381
6 (70,70,70) 0.252 0.319 0.302 0.266
7 (80,80,80) 0.236 0.308 0.301 0.253
8 (85,85,85) 0.228 0.295 0.282 0.243
9 (75,75,75) 0.237 0.315 0.323 0.256
10 (110,110,110) 0.209 0.291 0.256 0.225
11 (100,100,100) 0.217 0.287 0.271 0.232
12 (95,95,95) 0.213 0.284 0.291 0.231
13 (90,90,90) 0.223 0.284 0.285 0.237

14 (65,65,65) 0.254 0.309 0.313 0.268

15 (134,29,32) 0.207 0.395 0.377 0.249
16 (134,29,32) 0.215 0.380 0.379 0.254
17 (134,29,32) 0.213 0.401 0.377 0.254
18 (134,29,32) 0.207 0.401 0.383 0.251
19 (134,29,32) 0.213 0.386 0.401 0.252
20 (134,29,32) 0.209 0.386 0.390 0.251

Each set of Pmiss
i data from the first 14 episodes is fitted with the equa-

tion at the end of epoch 14; the three equations are then used to find
the optimal partition (134, 29, 32). This partition of M = 195 gives a
Pmiss that is similar to the equipartition (80, 80, 80) of M = 240 (saving
240 − 195 = 45 pages).

For dynamic buffer partitioning, we use epochs of length 2 minutes each:
long enough for a pool to reach steady state if its size has changed. We run a
workload mix similar to that in Section 3.3, but with each terminal generating
transactions indefinitely.

The buffer size M is changed at the beginning of each of the first 14 epochs,
but the partition remains M1 = M2 = M3. The miss probabilities Pmiss

1 , Pmiss
2 ,

and Pmiss
3 are recorded in Table II.

At the end of the 14th epoch, the buffer miss equation is used to fit the data
for each pool. The three equations are then used in a nested iteration to find a
partition to minimize the aggregate Pmiss (Eq. (4)), while keeping M constant
and Pmiss

i < 0.4 (modeling a service-level constraint).
The calculated optimal partition is (134,29,32). Table II shows an immediate

reduction in Pmiss from 0.268 for the equipartition (65,65,65) in epoch 14 to
0.249 for partition (134,29,32) in epoch 15. This Pmiss reduction appears small,
but is significant for the two reasons next given.

(1) With equipartitioning, a similar reduction in Pmiss requires 80 + 80 + 80 =
240 pages, instead of 134 + 29 + 32 = 195 pages.

(2) The Pmiss reduction results in a throughput increase from 489 transac-
tions/min. at epoch 14 to 517 transactions/min. thereafter.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:15

4.2 Fair Reclamation and Reallocation

With static buffer allocation, overprovisioning is necessary to accommodate
peak workloads. One compelling reason for dynamic self-tuning is that it al-
lows overcommitment (instead of overprovisioning) of memory, and facilitates
greater database server consolidation.

However, overcommitment requires rules and mechanisms for buffer recla-
mation when memory is short [Waldspurger 2002], as when a new job arrives
to join the workload mix. We now demonstrate how our equation can be used
to calculate the amount of space to reclaim from competing workloads.

Suppose the buffer is partitioned into pools of size M1, . . . , Mk . We want to
reclaim amount �i from Mi, so the ith pool has Mi − �i after reclamation.

Let � = �1 + · · · + �k be the target total to reclaim from the workloads.
For example, some � > 0 may be needed for assignment to a new arrival.
Conversely, a terminating workload may release its buffer space for distribution
to the other workloads, so � < 0. If one workload has passed its peak, the buffer
may be repartitioned by setting � = 0.

It follows that �i ≥ 0 and �i < 0 are both possible; �i < 0 just means
the ith pool is enlarged after reclamation. What �i should be depends on the
reclamation criterion, such as minimizing the aggregate Pmiss, equalizing the
miss probabilities Pmiss

i among the workloads, etc.

We illustrate with a fairness criterion: After reclamation, Pmiss
i
P∗

i
should be

the same for all i, where P∗
i is the cold miss probability for workload i. (In a

reference string of length L, n∗
i = P∗

i L is the number of distinct references and
ni = Pmiss

i L is the number of misses, so Pmiss
i
P∗

i
= ni

n∗
i

is the number of misses per
distinct reference.)

Suppose the Pmiss
i data has been fitted with the buffer miss equation, giving

parameters M ∗
i , Mbi, and Pci. One can show (Appendix A.2) that Pmiss

i
P∗

i
= Pmiss

j

P∗
j

for all i and j after reclamation if

�i = (Mi + Mbi) − βi

(
k∑

r=1

(Mr + Mbr) − �

)

where βi =
(

Pci
P∗

i
+ 1

)
(M ∗

i + Mbi)∑k
r=1

(
Pcr
P∗

r
+ 1

)
(M ∗

r + Mbr)
. (5)

For validation, we conduct an experiment with three pools, like the one in
Table II. For the first 14 epochs, we collect Pmiss

i data and fit it with the equation,
giving the parameters in Figure 8. In epochs 15 to 17, the buffer of M = 255
pages is equally partitioned. At epoch 18, � = 60 pages are reclaimed, using
Eq. (5), which gives (�1, �2, �3) = (−20.4, 68.6, 11.8); after reclamation, the
partition is (105, 16, 74).

Figure 8 shows that Pmiss
2
P∗

2
is always smallest before reclamation, which is

unfair. After 60 pages are reclaimed using our fairness criterion, the range in
Pmiss

i
P∗

i
is narrower, and no Pmiss

i
P∗

i
is consistently smallest.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:16 • D. N. Tran et al.

Fig. 8. Partition (85, 85, 85) for epochs 15 to 17 and repartition to (105, 16, 74) thereafter. Before
reclamation,

Pmiss
2
P∗

2
is significantly lower than

Pmiss
1
P∗

1
and

Pmiss
3
P∗

3
; after reclamation, the three are

similar.

4.3 Fast Retuning

So far, we assume there are sufficient Pmiss measurements for regression to
calibrate the parameters. If there is a sudden change in workload (e.g., an in-
crease in the number of terminals), one might want to immediately repartition
without waiting through several epochs of data collection.

If the buffer manager is using a replacement policy that has the inclusion
property, fast adaptation can be done by constructing a Mattson stack to calcu-
late Pmiss for various M (Case II(a) in Section 2.5).

To test this idea, we use LRU in PostgreSQL. We start three different work-
loads with 20, 16, and 14 terminals and a buffer size M = 240 partitioned into
(80, 80, 80). The references in epoch 2 are used to construct a Mattson stack for
each workload. In epoch 3, each stack is used to calculate 72 Pmiss

i data points,
which are then fitted with the buffer miss equation.

In Figure 9, there is an unfair spread in Pmiss
i
P∗

i
values for the first three epochs.

When epoch 4 begins, we use Eq. (5) and � = 0 to repartition the buffer into
(121, 89, 30). Figure 9 shows an immediate narrowing in the range of Pmiss

i
P∗

i
.

This exercise is repeated: At epoch 10, workload 1 reduces from 20 to 16
terminals and workload 2 increases from 16 to 20 terminals, while workload 3
remains unchanged. Figure 9 shows a bigger spread of Pmiss

i
P∗

i
in epoch 10.

In epoch 12, we construct a Mattson stack, and the buffer is repartitioned at
the beginning of epoch 14 into (102, 121, 17). After a 1-epoch time lag, the Pmiss

i
P∗

i

range narrows again in epoch 15.
We thus see how the Mattson stack and buffer miss equation can be used

together to quickly retune buffer allocation as workload changes. However, as
the stack is constructed from the references in a single epoch, this procedure’s
effectiveness depends on how representative the epoch.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:17

Fig. 9. Quick retuning with Mattson stack. Partition is (80, 80, 80) for epochs 1 to 3; Mattson stack
is constructed in epoch 2; repartition to (121, 89, 30) in epoch 4; workload changes in epoch 10 (note

the range increase in
Pmiss

i
P∗

i
); Mattson stack is constructed in epoch 12; repartition to (102, 121, 17)

in epoch 14.

If the replacement policy does not have the inclusion property, fast retuning
can be done similarly: Instead of (in effect, a simulation with) a Mattson stack,
we can run a background simulation of the policy against logged references
(Case II(b) in Section 2.5). The number of points one can generate may be
limited by simulation cost and epoch length, but we see in the next subsection
that a few points may suffice for the equation to work effectively.

4.4 Comparison With Gradient Descent: Service Differentiation

Finally, we compare our technique to the oft-used gradient-descent
method [Chung et al. 1995; Ko et al. 2003; Suh et al. 2004; Thiébaut
et al. 1992; Tian et al. 2003], using an experiment that demonstrates the
use of DB2’s interface for Pmiss retrieval (publib.boulder.ibm.com/infocenter/
tivihelp/v2r1/index.jsp); Oracle has a similar interface (www.dbspecialists.com/
presentations/buffercache.html).

Gradient descent is used by Ko et al. to drive Pmiss to a target miss probability
μ [Ko et al. 2003]. To reach this target, they use the iteration

M (n + 1) = M (n) + ε

g (n)
(Pmiss(n) − μ), (6)

where M (n) and Pmiss(n) are the buffer allocation and miss probability, re-
spectively, in epoch n, ε is a weight, and g (n) = Pmiss(n)−Pmiss(n−1)

M (n)−M (n−1) , namely g (n)

estimates gradient d Pmiss

d M of the Pmiss curve. If all (M (n), Pmiss(n)) lie on a de-
creasing curve, then a negative ε will guarantee that M (n) converges to μ.

In reality, (M (n), Pmiss(n)) data can fluctuate and may be nonmonotonic (e.g.,
transient effects from user arrivals or departures), possibly causing M (n) to
diverge from μ. Moreover, the convergence rate remains an issue.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:18 • D. N. Tran et al.

Fig. 10. Convergence comparison of three methods to bring Pmiss to a target μ: (a) gradient descent,
with gradient estimated from successive epochs; (b) gradient descent, with gradient calculated with
fitted equation; and (c) M calculated with Eq. (7). For (a) and (b), ε = −0.5 (following Ko et al.).

To illustrate, we run a TPC-C workload (mixture of 5 transaction types) on
a DB2 database with 8 warehouses. The number of terminals in each epoch is
constant, but changes cyclicly between epochs: 50,40,30,50,40,30, . . . This sim-
ulates the departure and arrival of users.

One can view the fluctuations as perturbations of a single workload. We set
target μ = 0.2 and (following Ko et al.) ε = −0.5, and start with M = 500 in
epoch 1 and M = 700 in epoch 2; these two data points suffice for gradient
descent to proceed. Figure 10 shows that Pmiss(n) suffers big deviations from μ

before reaching the target in epoch 13.
The big deviations are due to the poor gradient estimates that are caused

by data fluctuation. One can use our equation to solve this problem, as follows:
Suppose we have epochs n = 1, 2, . . . , k so far;

(i) fit (M (1), Pmiss(1)), . . . , (M (k), Pmiss(k)) with the equation;

(ii) use the equation to evaluate g (k) = d Pmiss

d M at M (k);
(iii) use Eq. (6) to determine M (k + 1).

Thus, the fitting smooths away the fluctuations, and the curve’s gradient
gives a better estimate of the Pmiss gradient. Figure 10 shows that with this
technique, Pmiss(n) converges steadily in six epochs to the target μ.

We can, in fact, replace the gradient descent entirely by using the equation
to calculate M , as follows:

(i) fit (M (1), Pmiss(1)), . . . , (M (k), Pmiss(k)) with the equation;
(ii) determine M (k + 1) by solving, from Eq. (1),

M = r
r2 − r + 1

(M ∗ + Mb) − Mb, where r = μ + Pc

P∗ + Pc
. (7)

As there are four parameters (M ∗, Mb, P∗, Pc), we start with k = 3 and search
for a Pc value to give a best fit for 3 points. Figure 10 shows immediate

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:19

convergence: Pmiss(4) = 0.194, which is 3% from the target μ = 0.2. We see here
that the equation can work effectively with a minimal number of data points.

After convergence, all three methods oscillate about μ, together with the
cyclical change in workload.

5. RELATED WORK

We now survey some related work.
Lightstone et al. [2002] have described the technological and manpower is-

sues that motivate the industrial push for self-designing, self-administering,
and self-tuning systems [Autoadmin 2006; Autonomic Computing 2006].
Benoit [2005] singles out the buffer pool as one of the most important targets
for self-tuning (another important memory allocation issue being the space re-
served for operators like sorting and hashing [Dageville and Zait 2002]).

In fact, recent tuning software from major vendors all address the issue of
buffer tuning [Dias et al. 2005; Narayanan et al. 2005; Storm et al. 2006]. How-
ever, they use trace simulation (instead of equations) to estimate the impact of
buffer allocation on I/O costs. The buffer miss equation can be used to comple-
ment this approach, as described in Case II(b) of Section 2.5. If trace simulation
is infeasible (e.g., the trace is not available, like in Section 3.2) or unrealistic
(e.g., the simulator is outdated), then the equation can work with the raw data,
like we demonstrated with DB2 in Section 4.4.

Many authors have found it useful to base their buffer tuning techniques on
an equation relating Pmiss to M [Chung et al. 1995; Storm et al. 2006; Tian et al.
2003; Tsuei et al. 1997]. Tian et al. [2003] consider the problem of allocating
memory to database objects (tables, indices, etc.); this is different from the
problem, considered here and elsewhere [Brown et al. 1996; Chung et al. 1995;
Ko et al. 2003; Lu et al. 2002; Suh et al. 2004; Thiébaut et al. 1992], of buffer
partitioning to suit multiclass workload.

In any case, the equation used by Chung et al. [1995], Tian et al. [2003], and
Tsuei et al. [1997] is the power law that Brown et al. [1996] find a poor fit for
database workloads. The power law is a rational function of M , whereas Storm
et al. [2006] use an exponential function, but without validation.

Brown et al. avoid the need for a specific equation, and rely only on the
function being concave. They use the line joining two neighboring data points
(i.e., gradient descent) to direct the way towards a target miss probability μ.
Concavity guarantees that their method converges. Unfortunately, real data
often does not satisfy concavity (see Figure 3).

Nonetheless, one can still apply their idea by first fitting the raw data with
the buffer miss equation. It is easy to show that the resulting curve has only
one change in convexity, located near M ∗ (see the end of the curve in Figure 5).
Since Pmiss only changes significantly for M 	 M ∗, the important part of the
equation’s curve is always concave.

Concavity is a helpful property for optimization problems [Zhou et al. 2004].
For example, concavity guarantees that Pmiss (averaged over all workloads i)

is minimized when the partition yields ∂ Pmiss
i

∂Mi
= ∂ Pmiss

j

∂M j
for all i and j , and there

are algorithms that use this property [Suh et al. 2004; Thiébaut et al. 1992]. As

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:20 • D. N. Tran et al.

in the case of gradient descent (Section 4.4), raw data can give poor estimates
of these derivatives, and cause convergence to be erratic and slow. Again, the
buffer miss equation can be used to smooth the data (Section 4.4), or to calculate
the minimizing partition (see Section 4.1).

However, for service differentiation, the objective is not to minimize av-
erage Pmiss, but to satisfy class-specific service goals. Like Brown et al.,
Ko et al. [2003] translate the problem of satisfying workload-specific latency
goals into target Pmiss

i values. They consider Pmiss
i to be an unknown function

of Mi, and apply black-box control loops; one of these uses gradient descent.
Their simplest controller for reaching target μ takes the form

M (n + 1) = M (n) + α(Pmiss(n) − μ),

where M (n) and Pmiss(n) are the buffer allocation and miss probability, respec-
tively, in epoch n, and α is a weight parameter. Given sufficient data for our
buffer miss equation to fit, one can replace such a control algorithm with the
simple calculation in Eq. (7). Figure 10 shows that this can provide faster con-
vergence than gradient descent and black-box techniques. Quick and effective
response is also demonstrated in Table II, Figure 8 and Figure 9.

For Lu et al., service differentiation is formulated as a target ratio ρi j for the
hit probabilities of workloads i and j ; they then design an adaptive controller on
Mi
M j

to drive convergence of 1−Pmiss
i

1−Pmiss
j

towards ρi j . Again, given the buffer miss
equation, one (can like in Eq. (7)) replace the control algorithm by a calculation
of the desired Mi

M j
.

The buffer miss equation is derived from Tay and Zou’s page fault equa-
tion [2006], which makes two modeling breakthroughs.

(1) It identifies a memory size M ∗
RAM at which page faults reach a minimum;

and
(2) it is derived from an analytical model that does not require restrictive as-

sumptions.

In this article, we exploit these properties through the buffer miss equation,
which works as follows.

(1) M ∗
RAM locates the buffer size M ∗ at which Pmiss reaches its minimum (see

Figure 11). In contrast, previous equations (e.g., power law) all model Pmiss

as decreasing forever [Belady 1996; Hsu et al. 2001; Storm et al. 2006; Tsuei
et al. 1997].

Buffer management studies often start with a given buffer size M ,
and focus on dividing this buffer among queries [Ng et al. 1995; Yu and
Cornell 1991]. They do not examine what M should be. In our context,
the queries constitute a workload. The buffer management policy
results in a Pmiss-vs-M curve for this workload, thus defining an M ∗ that
is a candidate for the buffer size.

It is a natural candidate: It corresponds to the knee point (in the
throughput-vs-M graph) that Tsuei et al. [1997] consider to be optimal,
and is analogous to the cache point used by Dageville and Zait [2002] to
size memory for SQL operators.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:21

There is increasing interest in reducing energy costs for data centers,
and memory is a prime consumer of electricity [Lefurgy et al. 2003]. There-
fore, M ∗ can be used by various energy-saving algorithms to identify excess
memory for powering down [Cai and Lu 2005].

(2) Pmiss is defined by an intricate interaction, between workload reference
pattern and buffer management policy, that is very hard to analyze mathe-
matically. Previous analytical models all impose strong assumptions on the
access pattern (e.g., independent references) or replacement policy (e.g.,
pure LRU) [Dan and Towsley 1990; Dan et al. 1995; O’Neil et al. 1999; Xi
et al. 2001]. As for the empirical equations, they have no theoretical justi-
fication at all.

The strong underlying assumptions or empirical nature of current equa-
tions for buffer tuning leave one in doubt over their ability to model real
Pmiss data. In contrast, Tay and Zou’s model is based on their general
but intuitive references+replacement invariant (Figure 4). This gives us
some confidence that the buffer miss equation is robust, as demonstrated in
Figures 2 and 3.

6. CONCLUSION

Current methods for buffer tuning are based on simulation, black-box control,
gradient descent, and empirical equations. This article presents a new approach
to dynamic buffer self-tuning, using a buffer miss equation that is validated
with different replacement policies (Figure 2) and commercial reference traces
(Figure 3).

Unlike empirical equations, the buffer miss equation is based on an analyt-
ical model (Section 2.4). The data points for calibrating the equation may be
from previous measurements (Case I in Section 2.5). If the replacement policy
has the inclusion property, the data can also be generated on-the-fly (like a
simulation) with a Mattson stack, but the equation remains useful for tuning
calculation, performance optimization, and measurement records (Case II(a)). If
the replacement policy does not have the inclusion property, the data points can
be generated by a background simulation with logged references (Case II(b));
this simulation can be scaled back progressively as more Pmiss measurements
become available.

The equation identifies a natural candidate M ∗ for buffer size (Section 3.1).
It can be used to extrapolate I/O costs when buffer size is changed (Figure 5),
without need for reference traces. For multiclass workloads, by fitting Pmiss

data from each workload, we can predict miss probability for every partition
(Figure 7), and optimize the partition dynamically (Table II). By restricting the
range of data points, we demonstrate the accuracy of the equation in predicting
Pmiss outside the range (Section 3.1, Figures 5, 6, and 7).

By analyzing the equation (Appendix A.2), we determine how memory can
be fairly reclaimed or reallocated (Eq. (5)) when workloads change, and demon-
strate such a dynamic alteration for the case where Pmiss data is already avail-
able (Figure 8), as well as with on-the-fly measurements (Figure 9).

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:22 • D. N. Tran et al.

The equation can be used to smoothen and speed-up convergence of the pop-
ular gradient-descent method for reaching a workload-specific Pmiss target, or
can replace that method entirely (Figure 10). This experiment also shows that
the equation can work effectively with minimal Pmiss data.

While the other experiments are done by instrumenting PostgreSQL, the
final experiment uses only DB2’s interface for retrieving miss probability.

APPENDIX

A.1 From Page Fault Equation to Buffer Miss Equation

This section derives the buffer miss equation from the following page fault
equation [Tay and Zou 2006].

P fault = 1
2

(H +
√

H2 − 4)(P∗ + Pc) − Pc, (8)

where H = 1 + M ∗
RAM − M0

MRAM − M0
, for M ≤ M ∗

RAM.

(P fault = P∗ for M ≥ M ∗
RAM.)

Here, P fault is the probability of a page fault, MRAM is the size of random
access memory (RAM), and P∗, Pc, M ∗

RAM, and M0 are parameters. In particular,
M0 measures the RAM space occupied by nonreplaceable pageframes, like those
belonging to the kernel.

Tay and Zou have shown that this equation gives an excellent fit for page-
fault data from a wide variety of workloads involving Windows, Linux, different
replacement policies, multiprogramming, dynamic allocation, garbage collec-
tion, interactive applications, etc. The equation’s robustness suggests that it
should fit database workloads as well.

For this article, our focus is on M (the size of database buffer), so we need a
change of variables. The amount of active RAM is

MRAM = M0 + Mb + M , (9)

where Mb measures RAM space occupied by the buffer manager, metadata,
indices, sorting, hashing, network connections, etc. This is illustrated in
Figure 11.

If most of the paging activity is caused by buffer misses, then we have

P fault ≈ Pmiss. (10)

In particular, as MRAM increases, P fault and Pmiss reach the cold miss P∗ at the
same point, so

M ∗
RAM = M0 + Mb + M ∗. (11)

Substituting Eqs. (9), (10), and (11) into Eq. (8) gives the buffer miss equation.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:23

Fig. 11. Relationship between the page fault equation and the buffer miss equation. M0 models
memory occupied by the kernel, and Mb models memory occupied by application code as well as
data outside of the database buffer.

A.2 Fair Reclamation

This section shows the derivation of �i for fair reclamation. The buffer miss
equation has an equivalent form(

r − 1 + 1
r

)
(M + Mb) = Ma,

where r = Pmiss + Pc

P∗ + Pc
and Ma = M ∗ + Mb.

Reclaiming �i from pool i results in(
ri − 1 + 1

ri

)
(Mi −
i + Mbi) = Mai.

Let
γi = ri − 1 + 1

ri
= Mai

Mi − �i + Mbi
.

For the interesting case of Pmiss
i � P∗

i , we have ri � 1, so

γi ≈ ri − 1 = Pmiss
i + Pci

P∗
i + Pci

− 1.

This gives
Pmiss

i

P∗
i

= 1 +
(

Pci

P∗
i

+ 1
)

γi = 1 +
(

Pci
P∗

i
+ 1

)
Mai

Mi − �i + Mbi
.

For equal Pmiss
i
P∗

i
, we get (using � = ∑k

r=1 �r)(
Pci
P∗

i
+ 1

)
Mai

Mi − �i + Mbi
=

∑k
r=1

(
Pcr
P∗

r
+ 1

)
Mar∑k

r=1 Mr − � + ∑k
r=1 Mbr

,

which is equivalent to Eq. (5).

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

3:24 • D. N. Tran et al.

ACKNOWLEDGMENTS

The authors would like to thank Hsu and Smith for sharing data from their
article Hsu et al. [2001].

REFERENCES

AUTOADMIN. 2006. AutoAdmin: Self-Tuning and self-administering datdbases. http://research.
microsoft.com/dmx/autoadmin.

AUTONOMIC COMPUTING. 2006. Autonomic computing homepage. http://www.research.ibm.com/
autonomic.

BANSAL, S. AND MODHA, D. S. 2004. Car: Clock with adaptive replacement. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies (FAST). USENIX Association, Berkeley,
CA, 187–200.

BELADY, L. A. 1996. A study of replacement algorithms for virtual storage computer. IBM Syst.
J. 5, 2, 78–101.

BENOIT, D. G. 2005. Automatic diagnosis of performance problems in database management sys-
tems. In Proceedings of the 2nd International Conference on Automatic Computing (ICAC). IEEE
Computer Society, Washington, DC, 326–327.

BROWN, K. P., CAREY, M. J., AND LIVNY, M. 1996. Goal-Oriented buffer management revisited. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press,
New York, 353–364.

CAI, L. AND LU, Y.-H. 2005. Joint power management of memory and disk. In Proceedings of
the Conference on Design, Automation and Test in Europe (DATE). IEEE Computer Society,
Washington, DC, 86–91.

CHUNG, J.-Y., FERGUSON, D., WANG, G., NIKOLAOU, C., AND TENG, J. 1995. Goal-Oriented dynamic
buffer pool management for data base systems. In Proceedings of IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS), Fort Lauderdale, FL. IEEE Computer
Society, 191–198.

DAGEVILLE, B. AND ZAIT, M. 2002. SQL memory management in Oracle9i. In Proceedings of the In-
ternational Conference on Very Large Databases (VLDB), Hong Kong, China. Morgan Kaufmann,
962–973.

DAN, A. AND TOWSLEY, D. 1990. An approximate analysis of the LRU and FIFO buffer replacement
schemes. In Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems. ACM Press, New York, 143–152.

DAN, A., YU, P. S., AND CHUNG, J. Y. 1995. Characterization of database access pattern for analytic
prediction of buffer hit probability. The VLDB J. 4, 1, 127–154.

DIAS, K., RAMACHER, M., SHAFT, U., VENKATARAMANI, V., AND WOOD, G. 2005. Automatic performance
diagnosis and tuning in Oracle. In Proceedings of the Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA. 84–94.

FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J. 2000. Equation-Based congestion control for
unicast applications. In Proceedings of the ACM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications (SIGCOMM). ACM Press, New York,
43–56.

HSU, W. W., SMITH, A. J., AND YOUNG, H. C. 2001. I/O reference behavior of production database
workloads and the TPC benchmarks—An analysis at the logical level. ACM Trans. Database
Syst. 26, 1, 96–143.

JAIN, R. 1991. The Art of Computer Systems Performance Analysis. John Wiley, New York.
KO, B.-J., LEE, K.-W., AMIRI, K., AND CALO, S. 2003. Scalable service differentiation in a shared

storage cache. In Proceedings of the 23rd International Conference on Distributed Computing
Systems (ICDCS). IEEE Computer Society, Washington, DC, 184–193.

LEFURGY, C., RAJAMANI, K., RAWSON, F., FELTER, W., KISTLER, M., AND KELLER, T. W. 2003. Energy
management for commercial servers. Comput. 36, 12, 39–48.

LIGHTSTONE, S. S., LOHMAN, G., AND ZILIO, D. 2002. Toward autonomic computing with DB2 uni-
versal database. SIGMOD Rec. 31, 3, 55–61.

LLANOS, D. R. 2006. TPCC-UVa: An open-source TPC-C implementation for global performance
measurement of computer systems. SIGMOD Rec. 35, 4, 6–15.

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

A New Approach to Dynamic Self-Tuning of Database Buffers • 3:25

LU, Y., ABDELZAHER, T., LU, C., AND TAO, G. 2002. An adaptive control framework for QoS guarantees
and its application to differentiated caching services. In Proceedings of the IEEE International
Workshop on Quality of Service (IWQoS), Miami Beach, FL. IEEE, 23–32.

MATTSON, R. L., GECSEI, J., SLUTZ, D. R., AND TRAIGER, I. L. 1970. Evaluation techniques for storage
hierarchies. IBM Syst. J. 9, 2, 78–117.

NARAYANAN, D., THERESKA, E., AND AILAMAKI, A. 2005. Continuous resource monitoring for self-
predicting DBMS. In Proceedings of the 13th IEEE International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE Computer
Society, Washington, DC, 239–248.

NG, R., FALOUTSOS, C., AND SELLIS, T. 1995. Flexible and adaptable buffer management techniques
for database management systems. IEEE Trans. Comput. 44, 4, 546–560.

O’NEIL, E. J., O’NEIL, P. E., AND WEIKUM, G. 1999. An optimality proof of the LRU-K page replace-
ment algorithm. J. ACM 46, 1, 92–112.

PADHYE, J., FIROIU, V., TOWSLEY, D. F., AND KUROSE, J. F. 2000. Modeling TCP Reno performance:
A simple model and its empirical validation. IEEE/ACM Trans. Netw. 8, 2, 133–145.

STORM, A. J., GARCIA-ARELLANO, C., LIGHTSTONE, S. S., DIAO, Y., AND SURENDRA, M. 2006. Adaptive
self-tuning memory in DB2. In Proceedings of the 32nd International Conference on Very Large
Data Bases (VLDB). VLDB Endowment, 1081–1092.

SUH, G. E., RUDOLPH, L., AND DEVADAS, S. 2004. Dynamic partitioning of shared cache memory.
J. Supercomput. 28, 1, 7–26.

TAY, Y. C. AND ZOU, M. 2006. A page fault equation for modeling the effect of memory size. Perform.
Eval. 63, 2, 99–130.

THIÉBAUT, D., STONE, H. S., AND WOLF, J. L. 1992. Improving disk cache hit-ratios through cache
partitioning. IEEE Trans. Comput. 41, 6, 665–676.

TIAN, W., MARTIN, P., AND POWLEY, W. 2003. Techniques for automatically sizing multiple buffer
pools in DB2. In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON). IBM Press, 294–302.

TPC-C BENCHMARK. 2006. TPC-C V5 homepage. http://www.tpc.org/tpcc/.
TSUEI, T.-F., PACKER, A. N., AND KO, K.-T. 1997. Database buffer size investigation for OLTP work-

loads. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
ACM Press, New York, 112–122.

WALDSPURGER, C. A. 2002. Memory resource management in VMware ESX server. In Proceedings
of the 5th Symposium on Operating Systems Design and Implementation (OSDI). ACM Press,
New York, 181–194.

XI, Y., MARTIN, P., AND POWLEY, W. 2001. An analytical model for buffer hit rate prediction. In
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON). IBM Press, 18.

YU, P. S. AND CORNELL, D. W. 1991. Optimal buffer allocation in a multi-query environment. In
Proceedings of the 7th International Conference on Data Engineering. IEEE Computer Society,
Washington, DC, 622–631.

ZHOU, P., PANDEY, V., SUNDARESAN, J., RAGHURAMAN, A., ZHOU, Y., AND KUMAR, S. 2004. Dynamic
tracking of page miss ratio curve for memory management. In Proceedings of the 11th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM Press, New York, 177–188.

Received September 2007; revised December 2007; accepted December 2007

ACM Transactions on Storage, Vol. 4, No. 1, Article 3, Publication date: May 2008.

