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1 Introduction
With growing demand for high-quality multimedia con-
tent, content providers face enormous pressure to scale
the serving capacity. Peer-to-peer content distribution is
a natural low cost option to scale system capacity. In a
P2P CDN model, content providers serve content using a
small number of “official” seeder nodes and rely on partic-
ipating users to act as individual seeders for others in the
system. Although P2P CDNs have the potential to drasti-
cally reduce the required serving capacity of official seed-
ers, they must address the challenge of incentivizing users
to stay online in the P2P network and act as seeders.

Unfortunately, the incentive mechanisms provided by
BitTorrent [4] and its many variants [7, 13] are insuffi-
cient. BitTorrent only incentivizes peers that areactively
downloading the same file to upload to each other. Once a
user completes a download, he has no incentive to act as
a seeder. In practice, most content distribution sites (e.g.
YouTube, NetFlix VoD) consist of a large number of files
that attract many users but not enough of them to ensure
multiple simultaneous downloaders at all times. An ideal
incentive mechanism should require users to contribute to
the P2P CDN even after completing their downloads. This
is also referred to as theseeder promotion problem [16]).

The importance of seeder promotion can be witnessed
in private BitTorrent communities. These private commu-
nities enforce sharing ratios among its members. For ex-
ample, in TorrentLeech, each peer must serve as a seeder
for 24 hours and its uploaded amount needs to be at least
0.4 times of its downloaded amount. These rules incen-
tivize peers to become seeders. As a result, the download
speeds and the availability of content in private BitTorrent
communities are significantly higher. A recent measure-
ment study [10] shows that private communities achieve
3-5× the median download speed of public communities
and possess 10-50× more seeders than those in public
communities. However, private BitTorrent communities
require trustworthy participants: they rely on peers to self-
report their upload/download volumes and can be easily
manipulated by selfish nodes [11].

To motivate selfish peers to become seeders, a P2P
CDN needs to have the desirable property that the more
a peer contributes (in terms of its uploads) to the system,
the better the service (in terms of download speed) it gets.
In this paper, we propose Credo, acredit-based reputation
system that achieves this property and is robust to various
attacks. In Credo, peers issue credit tokens to uploaders

when downloading data from them and collect credit to-
kens by uploading to others. Each credit token is explicitly
associated with the identity of the original credit issuer.
Nodes can either transfer credits received from other peers
or issue new original credit tokens. Unlike currency sys-
tems [12, 16, 21] which suffer from the bankruptcy prob-
lem, Credo allows each node to mint its own credits, thus
ensuring no honest node ever goes bankrupt.

Credo uses the credits to compute areputation score
which dictates how a peer allocates its upload bandwidth
to downloaders. The naive way of counting the number
of credits as a node’s reputation score is susceptible to
the collusion attack where a set of colluders swap credits
among themselves without doing actual uploads. Credo
employs two techniques to defend against such an attack.
First, a node’s reputation is computed by itscredit di-
versity which measures the number of distinct credit is-
suers among a node’s collected credits. Doing so can ef-
fectively limit the reputation score ofk colluders to at
mostk. Second, Credo explicitlymodels the distribution
of the amount of self-issued credits by all nodes and filters
a node’s collection of credits according to the measured
distribution. This prevents colluders from launching sus-
tained attacks by introducing Sybil identities that generate
arbitrary number of credits. Using the credit diversity and
distribution modeling mechanism, Credo can effectively
handle collusion attacks.

We believe that Credo is an attack-resilient P2P CDN
system that addresses many of the limitations of exist-
ing currency and reputation based P2P CDN solutions
and also provides a better incentive model to address the
seeder promotion problem.

2 Seeder promotion problem
We model the seeder promotion problem in a P2P CDN
as follows. We assume all peers are selfish. The utility of
each peer is characterized by its average download speed
and the goal of each peer is to employ a strategy that max-
imizes its download speed. It is worth pointing out that a
selfish peer isnot necessarily interested in minimizing its
upload cost: each user has a different threshold for ac-
ceptable upload cost. In order to motivate peers to serve
as seeders, a CDN must be “fair”. We use an intuitive no-
tion of fairness:the more a peer contributes to the system
(i.e. uploads) relative to its consumption (downloads), the
better average download speed it experiences when com-
peting with other downloaders. Our model of selfish peers



is similar to that proposed in [7]. However, the model in
[7] is used to study the incentives of BitTorrent while our
model aims to capture the seeder promotion problem.

Our fairness definition is more flexible than enforcing a
strict sharing ratio as done in private BitTorrent communi-
ties. With a strict sharing ratio, a highly provisioned peer
has no incentives to upload more than what is necessary
to meet its sharing ratio. Worse yet, a peer unable to meet
the sharing ratio requirement for various non-selfish rea-
sons (e.g. it is seeding unpopular files or has small upload
capacity compared to its download capacity) risks getting
expelled from the system. We also point out that our fair-
ness notion implicitly captures “market price” variations
according to supply and demand: when supply far exceeds
demand as exemplified by few or no concurrent down-
loaders for any given file, a peer does not need much con-
tribution in order to obtain a good download speed. On the
contrary, when demand far exceeds supply, a peer com-
peting with many concurrent downloaders needs to have
contributed much more to obtain a good download speed.

Our fairness notion maps naturally to a reputation sys-
tem where each peer’s reputation score reflects its net con-
tribution (i.e. its uploads minus its downloads) and each
peer allocates its upload capacity to active downloaders
according to their reputation scores. However, this repu-
tation based approach faces two practical challenges: (a)
how to capture a peer’s net contribution? (b) how to de-
fend against attacks on the reputation system itself?

The goal of our work is design a reputation system for
P2P CDNs that addresses both these challenges.

2.1 Related work
We survey existing proposals of P2P reputation and cur-
rency systems and discuss why they do not completely
address the seeder promotion problem.

The primary problem with existing reputation sys-
tems [5, 6, 9, 14] is that a peer’s reputation score does
not accurately reflect its net contribution. Existing repu-
tation systems calculate the reputation of a node based
on the interaction graph between nodes – where each
graph edge exists between a pair of nodes that have up-
loaded or downloaded to each other. EigenTrust [6] uses
the PageRank-style [1] propagation algorithm on the in-
teraction graph. OneHop reputation [14] and multi-level
tit-for-tat [9] restricts the PageRank-style propagationto
one or a few hops in the graph. Others have also pro-
posed to use the max-flow computation on the graph [2,5].
With graph-based reputation calculation, a peer’s reputa-
tion score is heavily influenced by its topological position
in the graph. Thus, a strategic peer can gain unfair ad-
vantage by selectively contributing to certain peers. As a
result, graph-based reputations do not satisfy the desired
fairness property.

Currency systems such as Dandelion [16], Bit-
Store [15], PACE [3], Antfarm [12] and others [20, 21]

incentivize peers to upload to others in exchange for to-
kens that entitle them to future downloads. Currency sys-
tem enforces the strict “download as much as you upload”
policy where a node with no currency is not allowed to
download. Compared to our notion of fairness, the policy
enforced by currency systems is less desirable: since all
peers achieve the same download speed as long as they
have non-zero currency tokens, a peer has no incentives
to contribute more than what is necessary to satisfy its
own demand. Moreover, currency systems typically rely
on a central party to mint currency tokens and thus face
the daunting challenge of maintaining liquidity according
to current demand and hoarding levels at all times. Other-
wise, many peers can go bankrupt and be unable to down-
load due to the lack of currency tokens.

3 Credo design
The Credo network consists of a large collection of peer
nodes as well as a central server trusted by all peers. The
central server admits new nodes into the system in a Sybil-
resilient fashion: we can either require users to present
a strong type of identity (e.g. credit card numbers, cell-
phone numbers) or use social-network based admission
control [18,19,23,24]. It is essential to restrict the number
of admitted Sybil identities per user. Otherwise, a collu-
sion group could have an arbitrary number of (Sybil) iden-
tities. We assume that the admission control algorithm
successfully limits each adversary to a few (s) Sybil iden-
tities. Each newly admitted identity obtains its certified
public/private key pair from the central server.

Credo uses the idea ofcredit-based reputations to better
incentivize nodes to act as seeders and also be resilient to
a wide range of attacks. At a high-level, Credo keeps track
of upload and download activities of peers using “credits”,
which are signed tokens confirming the transfer of a data
chunk in the system. Each credit is associated with the
original issuer of the credit and the chain of nodes that
the credit has traversed during data chunk transfers. Each
node is free to mint its own credits with monotonically
increasing local sequence numbers. Credo also supports
mechanisms to expire credits to prevent credit hoarding.

When a seeder is to upload a data chunk to a leecher,
it picks a credit from among the leecher’s credit pool and
requests the leecher to transfer the chosen credit in ex-
change for the upload. If the leecher’s credit pool is empty,
it needs to issue a new credit and give it to the seeder. Each
credit is a token originally signed by the issuer. Further-
more, when A gives a credit to B, A appends B’s identity
to the credit and signs the resulting credit chain with its
own key. Having an explicit signature chain allows us to
detect potential double-spenders. We note that when a pair
of peers both have data chunks of interest to each other,
they can still employ the BitTorrent-like protocols to ex-
change data chunks without any credit transfer.

To incentivize seeders, Credo must satisfy the fairness
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Figure 1:Nodes A,B,C collude by exchanging credits issued
by their respective Sybil identities (A’,B’,C’). Each colluder’s
credit diversity is increased to 3. Colluders may try to sustain a
credit diversity of 3 for their downloads by having Sybil identi-
ties continuously issue new credits to replace used ones.

property outlined in § 2 to give peers with more net con-
tribution better download speeds. In a credit-based repu-
tation mechanism, the reputation score of a peer is calcu-
lated based on the set of credits that it has collected from
others (calledcredit pool). In the absence of collusion, one
can measure a peer’s net contribution as thedifference be-
tween the number of credits in a peer’s credit pool and the
number of self-issued credits by the peer. In § 4, we will
describe the ideas ofcredit diversity andmodeling good
behavior which describe how this simple reputation met-
ric can be modified to handle collusion attacks.

To calculate a leecher’s reputation score, the seeder
asks each leecher to transfer its credit pool and report the
number of its self-issued credits. Credo can detect nodes
that lie about the number of self-issued credits (see § 5);
misbehaving nodes can be expelled from the system by
the central server.

When uploading data, a peer (seeder) uses the reputa-
tion scores of requesting peers (leechers) to provide differ-
entiated service across competing leechers. Each seeder
dedicates a fixed number of upload slots and picks leech-
ers with the top reputations among all requesters to serve.
After a leecher X is chosen to be served, the seeder veri-
fies that X’s credit pool size is indeed larger than that of
the highest unchosen leecher by transferring appropriate
number of credits from X. Next, we describe how Credo
computes the revised credit-based reputation score to han-
dle collusion attacks.

4 Credo’s defense against collusion
The biggest challenge facing Credo is to defend against
the collusion attack where a set of colluding peers ex-
change credits to boost each other’s reputation without
performing any actual uploads. Unlike other types of at-
tacks such as double-spending, colluders leave no prov-
able evidence for their misbehavior. Credo employs two
techniques to limit the effectiveness of collusion: (a)
credit diversity, (b) modeling good behavior.

4.1 Credit diversity
Recall that our basic design uses the credit pool size for
calculating a node’s reputation score. Such a scheme is ex-
tremely vulnerable to collusion since an adversarial node
can easily boost its reputation by having its few Sybil
identities to issue a large number of credits. Credo de-
ters this attack by measuring the credit diversity of a
node’s credit pool as the number of distinct issuers among
a node’s credit pool. Credit diversity differs from credit
quantity in that each unique issuer is counted only once;
hence, a seeder node is incentivized to increase its credit
diversity instead of credit quantity. LetC be a node’s credit
pool,d(C) be the set of distinct issuers in the credit pool
andx denote the number of self-issued credits. A node’s
reputation is calculated as follows:

rep = |d(C)| − ρ · x (1)

In Equation 1,ρ is an constant parameter greater than1
so that a node prefers spending credits collected from oth-
ers over issuing new credits; this technique avoids over-
head of the system caused by redundant credits. In this
augmented design, if an adversarial node has only a few
Sybil identities, it can only increase its credit diversity
slightly without uploading data to honest nodes. On the
other hand, honest nodes can increase its credit diversity
quickly by collecting diverse credits from highly reputed
downloaders which have big and diverse credit pools, or
by uploading data to many different nodes. Furthermore,
even if a set ofk adversaries, each bring ins Sybil identi-
ties and collude by exchanging credits among themselves,
the maximum reputation of each colluding adversary is
at mostk · s. As seen in Figure 1, each adversarial node
(A, B, C) can achieve a reputation score of at most 3 with
three Sybil identities (A’,B’,C’) despite the fact that each
Sybil identity has issued 100 credits.

4.2 Modeling good behavior
Although using credit diversity can bound the maximum
reputation score of a set of colluding adversarial nodes,
each colluder can still retain its maximum reputation no
matter how much data it downloads. That is because ev-
ery Sybil node can issue arbitrarily many new credits to
replenish the credit pool of an adversarial node. For ex-
ample, in Figure 1, each adversarial node has 100 credits
from every Sybil identity. Suppose node A has used up all
100 credits from C’ to download 100 units of data, it can
always request for more credits from C’ to maintain the
reputation score of 3 in future downloads.

To mitigate such sustained collusion attacks, Credo
models the typical behavior of honest nodes. More con-
cretely, letZ be the random variable of the number of self-
issued credits of the issuer of a randomly chosen credit.
We measure the distribution ofZ for the overall system
and use it to filter a node’s credit pool to obtain a subset
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of credits,C′ ⊂ C, so that the distribution of the number
of self-issued credits by issuers inC′ approximates theZ-
distribution. We augment Equation 1 to use the filtered
pool (C′) for calculating credit diversity. For an honest
node whose credit pool consists of randomly chosen cred-
its, this filtering step has little effect. On the other hand,
filtering significantly limits attackers’ ability to carry on
sustained attacks. In Appendix A, we prove that the max-
imum downloads an adversarial node can perform with
maximum reputation iss · γ · x̄, wheres is the number of
Sybil identities controlled by each adversarial node,x̄ is
the average number of self-issued credits of honest issuers
andγ is a small constant. Intuitively, this result says that
an Sybil node can issue onlyγ · x̄ credits in average and
send them to the adversary node; this amount of credits is
close to the amount of credit issued by an honest node in
the system (̄x).

The central server is in charge of computing and repre-
senting theZ-distribution periodically everyτ time unit,
whereτ the expiration time for credits. LetX be the ran-
dom variable of the number of credits issued by a random
node that has issued non-zero credits. The central server
can easily measure the distribution ofX by sampling a
random subset of nodes in the system: it picks a random
node ID and asks for one of the node’s witnesses for num-
ber of credits issued by that node in the lastτ time period.
There is the risk that adversarial nodes can skew the dis-
tribution ofX toward the high end by using a few Sybil
identities to issue a huge number of credits. Therefore, we
use the truncated distribution ofX that excludes a small
fraction (δ) of issuers that have issued the most credits. As
a result, as long as the colluding set of Sybil identities do
not exceedδ fraction of all nodes, they cannot affect the
measured distributionX .

We model an honest node’s credit pool as a set of ran-
domly chosen credits in the system. LetZ be the random
variable of the number of credits issued by the issuer of
a randomly chosen credit. We expect the distribution of
the number of credits minted by those issuers seen in an
honest node’s credit pool to resemble theZ-distribution.
There is a clear relationship between distribution ofZ and
that ofX , namely:

Pr(Z = x) =
Pr(X = x)x

E(X)

The central party representsZ-distribution using a set
of probability density bounds that correspond tom bins,
as shown in Figure 2. Let the range of thei-th bin be
[bi, bi+1). The ranges of the bins are chosen to so that
the size of successive bins increases exponentially, i.e.
bi+1

bi
= γ whereγ is a small constant bigger than 1. Our

proof of Credo’s collusion resilience relies on the choice
of γ (Appendix A). The probability density of thei-th bin
is calculated asPr(bi ≤ Z < bi+1) and its lower bound

(pi) can be derived from the distribution ofX as follows:

pi =
Pr(bi ≤ X < bi+1) · bi

E(X)

≤

∑

bi≤x<bi+1
Pr(X = x) · x

E(X)

≤ Pr(bi ≤ Z < bi+1)

The set of lower bounds (pi) will be used to check if
the distributionZ ′ of a given set of creditC′ is close to
Z. A node periodically asks the central server for the set
of lower bounds everyτ time unit. Given a set of credit
C′, a seeder can directly test ifZ ′ satisfy the set of lower
bounds since each credit embeds the number of credits its
issuer issued in the lastτ time unit. Finding the subsetC′

of the original credit poolC is slightly harder. A leecher
can do exhausted search to find the optimalC′ for its own
interest. It can also perform a greedy heuristic as follow.

Given a credit poolC, we first classify each credit into
the i − th bin if the number of credits (z) minted by the
issuer of that credit is in the range[bi, bi+1) as shown in
Figure 3. Letci be the number of credits classified to the
i-th bin. In order for shaping the filtered poolC′ accord-
ing to the measured probability density lower bounds, we
must ensure that:

ci

|C′|pi
≥ 1 ∀i (2)

We start with the original credit poolC and check if it
passes the test in Equation 2. If the test fails and thei-
th bin having the highest value ofci|C′|pi

, we remove one
credit from thei-th bin. If there are multiple credits with
the same issuer from that bin, we choose to remove one
of them. Otherwise, a randomly chosen credit is removed.
We repeat this process until the test passes or no more
credits are left. The remaining credits formC′.

4.3 Discussion
The techniques presented in §4.1 and §4.2 mitigate collu-
sion but also affect honest nodes in two ways. First, if a
group of honest nodes predominantly upload data to each
other as opposed to those outside the group, their reputa-
tion scores will be lower than their net contribution. Thus,
by penalizing certain collusive behavior, Credo also pe-
nalizes (hopefully rare) honest behavior that resembles
collusion. When considering a long period of time, we
expect most honest nodes to be able to upload data to a di-
verse set of other nodes. Second, an honest seeder may not
always have incentive to serve the leecher with the best
reputation. For example, if a seeder has already served
leecher X withrepX < 0, it will prefer serving Y over
X even thoughrepY < repX . This is because the seeder
can improve its diversity with a new credit issued by Y
instead of another credit issued by X1. We can mitigate

1The seeder will continue to prefer X if X has a non-zero creditpool
since the seeder is free to choose credits with different issuers from X’s
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Figure 2:Credo models the behavior of honest nodes with
Z-distribution (Z is the random variable of the number of
self-issued credits by the issuer of a randomly chosen credit).
Credo representsZ-distribution usingm bins.

Figure 3:Credo limits sustained collusion attack using the
pi test. In the example, the grey bars correspond toC of an
adversarial node. The white bars correspond to the resulting
C
′ that fitsZ-distribution (dotted lines).

this problem by countingδ > 1 credits from each issuer
when measuring credit diversity; the tradeoff is that the
maximum reputation score of an adversary also increases
as a result. Once a seeder servesδ chunks to a leecher
with a negative reputation, it will prefer uploading another
node. However, doing so is actually better for the global
“good” as there will be more bilateral exchange opportu-
nities among leechers.

5 Detecting misbehavior
Apart from collusion, Credo also faces other attacks such
as double-spending and under-reporting of self-issued
credits. Unlike collusion, these attacks leave provable ev-
idence for a node’s misbehavior due to the various public
signatures required by the protocol [8]. Credo uses a lazy
auditing protocol to detect misbehavior. We give a few
example detections and omit the rest of the details due to
space constraints. To detect double-spenders, each node
periodically reports a credit it has gotten from peer X to
X’s witness nodes (Credo uses a DHT [17] to decide X’s
witness nodes). When X double-spends a credit to both Y
and Z, the witness nodes of X will receive two signature
chains that show X has signed the transfer of the same
credit to both Y and Z, thereby provably detecting X’s
misbehavior. Similarly, we can also detect if a leecher has
under-reported the number of its self-issued credits or if a
peer has issued the same credit multiple times. We use the
protocol in [8] to catch deviant nodes during the process
of exchanging chunks for credits.

6 Preliminary Evaluation
In this section, we demonstrate using simulations how
Credo’s reputation mechanism successfully reflects a
node’s net contribution and is resilient to collusion. Using
a deployment on PlanetLab on210 nodes, we also show
how Credo improves system performance when nodes are
incentivized to act as seeders.

credit pool to improve its diversity.

6.1 Simulations

We simulate a peer-to-peer content distribution network
of n = 3000 nodes. In our simulations, each node has
a upload limit of200KB per second. A node divides its
upload capacity to4 upload slots of50KB per second
each. Download capacity of a node is5 times the upload
capacity, i.e.20 download slots. We control the actual up-
load contribution of a node by a parameter:willingness.
When a node (seeder) has a free upload slot, it decides to
upload to some node (leecher) with a probability propor-
tional to its willingness. We set the willingness of nodes
in our simulation to follow the distribution of upload ca-
pacity as measured in [13]. We inject new files of100MB

to the system sequentially: a new file is injected when all
nodes that want the previous file have finished download-
ing it. Not every node wants every file; instead, each node
has a particular demand. When we inject a new file, we
choose300 nodes to download the file. The probability
that a node is chosen is proportional to its demand. We
model the demand of nodes follows the demand distribu-
tion in the Maze file sharing system [22]. We also choose
10 random other nodes as the initial seeders. We choose
30 nodes to be adversaries. Each adversary node controls
3 Sybil nodes. They collude with each other to form a
collusion size of90, i.e. < 5% of the system. In every
τ = 3 days interval, the Sybil nodes issue credits with
the optimal amount such that the adversaries’ credit pool
C pass theZ-distribution test, i.e. achieving the bound in
Observation A.1. The credits are divided equally to the
adversary nodes. Adversaries use those credits to down-
load files. We vary the the number of files the30 adver-
saries want to download inτ interval in different runs of
the simulations. Our simulation stops after simulating the
peer-to-peer system for1 year.

Figure 4 shows nodes’ average reputation scores as a
function of their net contribution. Our analysis shows that
Credo reputation score reflects a node net contribution
correctly if nodes follow the protocol. The slope of the
curve for the negative net contribution region is bigger
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Figure 4:Reputation of colluding adversaries and honest nodes
as a function of net contribution.

than that for the positive net contribution region because
we setρ = 2. A node with negative net contribution usu-
ally has empty credit pool. Downloading one data chunk
decreases its net contribution by 1, and decreases its rep-
utation by 2 since it has to issue new credit. On the other
hand, nodes with a positive net contribution can spend one
credit in their credit pool to download a chunk resulting in
decreasing both net contribution and reputation by 1.

In Figure 4, we also plot the reputation of the adversary
nodes in different simulation runs with the different num-
ber of files they want to download. Because the adversary
nodes never upload to other nodes, their net contributions
are always negative. Their maximum reputation score is
90 because there are90Sybil nodes in this simulation. The
Sybils issue139 credits in average in the optimal strategy,
making each adversary hold417 credits. When an adver-
sary node downloads more than4 files in oneτ interval, it
issues new credits and the reputation drops below0.

In Figure 5, we plot average download time as a func-
tion of the net contribution for both adversary nodes as
well as honest nodes. As expected, honest nodes with
higher net contribution get better download times. This
creates incentive for nodes to contribute more. Adver-
saries can get better download times from collusion but
the download times cannot be better than honest nodes
with a net contribution of90.

6.2 PlanetLab deployment

We have a preliminary implementation that integrates
Credo credit-based reputation system into the popular
Azureus BitTorrent client. We keep the bilateral exchange
protocol between nodes intact and only modify the pro-
tocol between seeder and leecher: exchanging data chunk
for credit, picking the top reputation leecher to unchoke.
We have deployed the system on PlanetLab on210 nodes.

To examine the real performance benefits when nodes
are incentivized to contribute, we compare two scenar-
ios. In the first scenario, nodes run our modification of
Azureus BitTorrent that integrates the Credo protocol.
Nodes are incentivized to serve other nodes in order to
gain reputation after downloading a file. In the second sce-
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Figure 6:Cumulative distribution of download time two sce-
nario: 1) nodes stay online and continue upload to others, 2)
nodes go off line immediately after getting a file.

nario, nodes run the original Azureus BitTorrent. They go
off line immediately after their download completes.

We inject a25 MB file to one seeder at the beginning
and other nodes arrive to download the file one at a time
every 15s. We set the application limit throughput us-
ing the distribution in [13] and the download throughput
limit is 5 times the upload limit. In the Credo version of
Azureus, a leecher pays one credit to a seeder after down-
loading250 KB from the seeder. Figure 6 plots the cu-
mulative distribution of complete download time in both
scenario. We observe that both the average and the me-
dian download time improve significantly when nodes are
incentivized to stay online using Credo in scenario1. The
average download time drops from935 seconds (scenario
2) to347 seconds (scenario 1). The median download time
also drops from638 seconds to172 seconds. This result
shows that the aggregate capacity of the system improves
2.7 times when nodes are incentivized to contribute.

7 Conclusion
This paper describes the design of Credo, a robust credit-
based reputation system that address the seeder promotion
problem in P2P CDNs and is robust in the face of collu-
sion attacks and Sybil attacks. Credo addresses the limi-
tations of existing reputation and currency-based systems
and Credo’s credit-based reputation mechanism better re-
flects a nodes’ true net contribution.
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A Defending against collusion
In this section, we present analysis results to quantify how
Credo limits sustained collusion attacks.

Colluding adversarial nodes exchange credits issued by
their Sybil identities (see example in Figure 1). Each ad-
versarial node can haves Sybil identities wheres = O(1).
Since colluders are self-interested adversaries, they aimto
fairly divide the credits among themselves so that each ad-
versarial node is benefitted equally from the collusion. For
the simplicity of discussion, we assume adversarial nodes
do not contribute any uploads to the system. Furthermore,
we assume the set of colluding adversaries is smaller than
the thresholdδ∗n, whereδ is the parameter used for mea-
suring the truncated distribution ofX .

Observation A.1 Suppose there are k self-interested col-
luding adversarial nodes, each with s Sybil identities.
Credo limits the maximum reputation of an adversarial
node to be k · s. More importantly, the average number of
data chunks that an adversarial node can download with
the maximum reputation score k is at most s · γ · x̄, where
x̄ is the expected number of credits issued by an honest
node.

Proof Sketch The maximum credit diversity ofk collud-
ing adversaries isk · s without any upload contribution,
hence the maximum reputation score isk · s.

Next, we prove the bound on the maximum downloads
an adversarial node can perform with maximum reputa-
tion. Let X ′ be the random variable of the number self-
issued credits of Sybil identities and letZ ′ be the random
variable of the number of self-issued credits minted by the
Sybil identity of a randomly chosen credit among adver-
sarial nodes. We know thatPr(Z ′ = x) = Pr(X′=x)x

E(X′) .
Since adversarial nodes aim to fairly divide the credits is-
sued by Sybils among themselves, the issuance distribu-
tion for each adversary’s credit pool can be approximated
by the overall distributionZ ′.

The filtering process ensures that the resulting credit
pool of an adversary passes the set ofpi tests:

pi < Pr(bi ≤ Z ′ < bi+1)

<
Pr(bi ≤ X ′ < bi+1) · bi+1

E(X ′)
(3)

Substitutingpi = Pr(bi≤X<bi+1)·bi
E(X) into Inequality 3

and re-arranging sides, we obtain:

E(X ′) ≤
bi+1

bi
E(X)

Pr(bi ≤ X ′ < bi+1)

Pr(bi ≤ X < bi+1)
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= γ ·E(X) ·
Pr(bi ≤ X ′ < bi+1)

Pr(bi ≤ X < bi+1)
(4)

In Inequality 4,γ is determined by the number of cho-
sen bins (m) such thatγ = bi+1

bi
for all i. Moreover, In-

equality 4 holds true for alli. As the last step of simpli-
fication, we use the property that for any given positive
numbersa, b1, c1, b2, c2, if a ≤ b1

c1
and a ≤ b2

c2
, then

a ≤ b1+b2
c1+c2

. Applying this observation to Inequality 4 for
all i, we obtain:

E(X ′) ≤ γ ·E(X) (5)

Because the total number of credits issued byk ·s Sybil
identities isk · s · E(X ′), each adversarial node gets at
mosts · E(X ′) credits which is less thans · γ · E(X).
By definition,E(X) is the expected number of credits for
the truncated distribution after excludingδ · n top issuers.
Since we assume the number of colluding adversaries is
lessδ · n, the number of honest nodes is greater than(1−
δ)n. Hence,x̄ ≥ E(X) wherex̄ is the expected number
of credits issued by an honest node that issues non-zero
credit. Thus, we deriveE(X ′) ≤ s · γ · x̄.

It is interesting to note that, for a given range[b0, bm]
of a truncated distribution ofX , the system parameter of
the number of bins (m) uniquely determinesγ. Specifi-

cally, γ = m

√

bm
b0

. Therefore,γ decreases as we increase

the number of binm, improving the bound on sustained
collusion attacks. However, whenm is too large, we also
risk filtering out too many credits from a honest node’s
credit pool unnecessarily.
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