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1 Introduction when downloading data from them and collect credit to-

] ) ) ) ) ) kens by uploading to others. Each credit token is explicitly
With growing demand for high-quality multimedia conggsgsociated with the identity of the original credit issuer.

tent, content providers face enormous pressure to sqijes can either transfer credits received from other peers
the serving capacity. Peer-to-peer content distributiongy jssye new original credit tokens. Unlike currency sys-
a natural low cost option to s<_:a|e system capacity. _'nte%s [12, 16, 21] which suffer from the bankruptcy prob-
P2P CDN model, content providers serve content usings@, Credo allows each node to mint its own credits, thus
small number of “official” seeder nodes and rely on partignsuring no honest node ever goes bankrupt.

ipating users to act as individual seeders for others in thebredo uses the credits to computeeputation score

system. Although P2_P CDNs _have the potentla_l to drasfinich dictates how a peer allocates its upload bandwidth
cally reduce the required serving capacity of official seegl: 4ownloaders. The naive way of counting the number
ers, they must address the challenge of incentivizing Usgfsyedits as a node’s reputation score is susceptible to
to stay online in the P2P network and act as seeders. g ¢qlusion attack where a set of colluders swap credits
_Unfortunately, the incentive mechanisms provided By ong themselves without doing actual uploads. Credo
BitTorrent [4] and its many variants [7, 13] are insuffigmnioys two techniques to defend against such an attack.
cient. BitTorrent only incentivizes peers that actively First, a node’s reputation is computed by diedit di-
downloading the same file to upload to each other. Oncggity which measures the number of distinct credit is-
user completes a download, he has no incentive t0 aCk@8 s among a node’s collected credits. Doing so can ef-
a seeder. In practice, most content distribution sites (Q‘é’ctively limit the reputation score of colluders to at
YouTube, NetFlix VoD) consist of a large number of fileg, st .. Second, Credo explicitignodels the distribution
that attract many users but not enough of them to ensy¥e, amount of salf-issued credits by all nodes and filters
multiple simultaneous downloaders at all times. An idegl,o4e’s collection of credits according to the measured
incentive mechanism should require users to contribute{Qyrihytion. This prevents colluders from launching sus-
the P2P CDN even after completing their downloads. Thigeq attacks by introducing Sybil identities that geteera
is also referred to as treeeder promotion problem [16]). - grpitrary number of credits. Using the credit diversity and
~ The importance of seeder promotion can be witnessgdiripution modeling mechanism, Credo can effectively
in private BitTorrent communities. These private commyzndie collusion attacks.
hities enforce sharing ratios among its members. FOr €Xyye pejieve that Credo is an attack-resilient P2P CDN
ample, in TorrentLeech, each peer must serve as a seedgfon that addresses many of the limitations of exist-
for 24 hours and its uploaded amount needs to be at IeI at currency and reputation based P2P CDN solutions

04 times of its downloaded amount. These rules incefy also provides a better incentive model to address the
tivize peers to become seeders. As a result, the downl ad jer promotion problem

speeds and the availability of content in private BitTotren
communities are significantly higher. A recent measurs- - Soader promotion problem
ment study [10] shows that private communities achieve
3-5x the median download speed of public communiti&¥e model the seeder promotion problem in a P2P CDN
and possess 10-50more seeders than those in publias follows. We assume all peers are selfish. The utility of
communities. However, private BitTorrent communitiesach peer is characterized by its average download speed
require trustworthy participants: they rely on peers td-seand the goal of each peer is to employ a strategy that max-
report their upload/download volumes and can be easityizes its download speed. It is worth pointing out that a
manipulated by selfish nodes [11]. selfish peer isiot necessarily interested in minimizing its

To motivate selfish peers to become seeders, a RgHoad cost: each user has a different threshold for ac-
CDN needs to have the desirable property that the maeptable upload cost. In order to motivate peers to serve
a peer contributes (in terms of its uploads) to the systeas, seeders, a CDN must be “fair”. We use an intuitive no-
the better the service (in terms of download speed) it gaien of fairnessthe more a peer contributes to the system
In this paper, we propose Credaradit-based reputation  (i.e. uploads) relative to its consumption (downloads), the
system that achieves this property and is robust to varidagter average download speed it experiences when com-
attacks. In Credo, peers issue credit tokens to uploadeatng with other downloaders. Our model of selfish peers



is similar to that proposed in [7]. However, the model imcentivize peers to upload to others in exchange for to-
[7]is used to study the incentives of BitTorrent while outens that entitle them to future downloads. Currency sys-
model aims to capture the seeder promotion problem. tem enforces the strict “download as much as you upload”
Our fairness definition is more flexible than enforcingolicy where a node with no currency is not allowed to
strict sharing ratio as done in private BitTorrent commuriownload. Compared to our notion of fairness, the policy
ties. With a strict sharing ratio, a highly provisioned pe@nforced by currency systems is less desirable: since all
has no incentives to upload more than what is necesspegrs achieve the same download speed as long as they
to meet its sharing ratio. Worse yet, a peer unable to mbave non-zero currency tokens, a peer has no incentives
the sharing ratio requirement for various non-selfish reta- contribute more than what is necessary to satisfy its
sons (e.g. it is seeding unpopular files or has small uploawin demand. Moreover, currency systems typically rely
capacity compared to its download capacity) risks gettiog a central party to mint currency tokens and thus face
expelled from the system. We also point out that our faihe daunting challenge of maintaining liquidity according
ness notion implicitly captures “market price” variationto current demand and hoarding levels at all times. Other-
according to supply and demand: when supply far excegdse, many peers can go bankrupt and be unable to down-
demand as exemplified by few or no concurrent dowlpad due to the lack of currency tokens.
loaders for any given file, a peer does not need much cgp- .
tribution in order to obtain a good download speed. On t& Credo desi gn

contrary, when demand far exceeds supply, a peer Coffiz credo network consists of a large collection of peer
peting with many concurrent downloaders needs t0 hgygyes as well as a central server trusted by all peers. The
contributed much more to obtain a good download spegd4| server admits new nodes into the system in a Sybil-
Our fairess notion maps naturally to a reputation sygsilient fashion: we can either require users to present
tem where each peer’s reputation score reflects its net CQMstrong type of identity (e.g. credit card numbers, cell-
tribution (i.e. its uploads minus its downloads) and eaﬁhone numbers) or use social-network based admission
peer allocates its upload capacity to active downloadegshirol [18,19,23,24]. Itis essential to restrict the nemb
according to their reputation scores. However, this repyadmitted Sybil identities per user. Otherwise, a collu-
tation based approach faces two prac;tical challenges: {@), group could have an arbitrary number of (Sybil) iden-
how to capture a peer's net contribution? (b) how to dgges. We assume that the admission control algorithm
fend against attacks on the reputation system itself? successfully limits each adversary to a fey$ybil iden-
The goal of our work is design a reputation system fgfies. Each newly admitted identity obtains its certified
P2P CDNs that addresses both these challenges. public/private key pair from the central server.
21 Reated work _ Cre(_:iq uses the idea ofedit-based reputationsto bettg_r
incentivize nodes to act as seeders and also be resilient to
We survey existing proposals of P2P reputation and carwide range of attacks. At a high-level, Credo keeps track
rency systems and discuss why they do not completelyupload and download activities of peers using “credits”,
address the seeder promotion problem. which are signed tokens confirming the transfer of a data
The primary problem with existing reputation sysehunk in the system. Each credit is associated with the
tems [5, 6, 9, 14] is that a peer’s reputation score doesginal issuer of the credit and the chain of nodes that
not accurately reflect its net contribution. Existing repthe credit has traversed during data chunk transfers. Each
tation systems calculate the reputation of a node basedie is free to mint its own credits with monotonically
on the interaction graph between nodes — where eagtreasing local sequence numbers. Credo also supports
graph edge exists between a pair of nodes that have mechanisms to expire credits to prevent credit hoarding.
loaded or downloaded to each other. EigenTrust [6] use3Vhen a seeder is to upload a data chunk to a leecher,
the PageRank-style [1] propagation algorithm on the iit-picks a credit from among the leecher’s credit pool and
teraction graph. OneHop reputation [14] and multi-leveéquests the leecher to transfer the chosen credit in ex-
tit-for-tat [9] restricts the PageRank-style propagation change for the upload. If the leecher’s credit pool is empty,
one or a few hops in the graph. Others have also pitreeds to issue a new credit and give it to the seeder. Each
posed to use the max-flow computation on the graph [2,6]edit is a token originally signed by the issuer. Further-
With graph-based reputation calculation, a peer’s reputaere, when A gives a credit to B, A appends B’s identity
tion score is heavily influenced by its topological positioto the credit and signs the resulting credit chain with its
in the graph. Thus, a strategic peer can gain unfair agvn key. Having an explicit signature chain allows us to
vantage by selectively contributing to certain peers. Aglatect potential double-spenders. We note that when a pair
result, graph-based reputations do not satisfy the desioégbeers both have data chunks of interest to each other,
fairness property. they can still employ the BitTorrent-like protocols to ex-
Currency systems such as Dandelion [16], Bithange data chunks without any credit transfer.
Store [15], PACE [3], Antfarm [12] and others [20, 21] To incentivize seeders, Credo must satisfy the fairness
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I,"\\ g: 188 Recall that our basic design uses the credit pool size for
! C' 100 calculating a node’s reputation score. Such a scheme is ex-
i ! tremely vulnerable to collusion since an adversarial node
\ . . . . . .
A' 100 \,’ can easily boost its reputation by having its few Sybil
B' 100---7 "~ < = st <A 100 identities to issue a large number of credits. Credo de-
, N B' 100 ) ) - :
C' 100 , ‘\@ @ C' 100 ters this attack by measuring the credit diversity of a
Te-eeeT Te---- - node’s credit pool as the number of distinct issuers among
colluder B colluder C a node’s credit pool. Credit diversity differs from credit

] guantity in that each unique issuer is counted only once;
Figure 1:Nodes AB,C collude by exchanging credits issuedence, a seeder node is incentivized to increase its credit
by their respective Sybil identities (A,B',C’). Each coller's ;e ity instead of credit quantity. Létbe a node’s credit
credit diversity is increased to 3. Colluders may try to gimst pool, d(C) be the set of distinct issuers in the credit pool

credit diversity of 3 for their downloads by having Sybil idie . . \
ties continuously issue new credits to replace used ones. andx dgnqte the number of self-issued credits. A node’s
reputation is calculated as follows:

property outlined in § 2 to give peers with more net con- -
tribution better download speeds. In a credit-based repu- rep=1d(C)| —p- = @

tation mechanism, the reputation score of a peer is calcug Equation 1p is an constant parameter greater than
lated based on the set of credits that it has collected fr%mthat a node prefers Spending Credits Collected from oth_
others (calledredit pool). In the absence of collusion, ongyrs over issuing new credits; this technique avoids over-
can measure a peer’s net contribution aglifferencebe- head of the system caused by redundant credits. In this
tween the number of credits in a peer’s credit pool and thegmented design, if an adversarial node has only a few
number of self-issued credits by the peer. In § 4, we Willybi| identities, it can only increase its credit diversity
describe the ideas afedit diversity andmodeling good  g|ightly without uploading data to honest nodes. On the
behavior which describe how this simple reputation megther hand, honest nodes can increase its credit diversity
ric can be modified to handle collusion attacks. quickly by collecting diverse credits from highly reputed
To calculate a leecher’s reputation score, the seedewnloaders which have big and diverse credit pools, or
asks each leecher to transfer its credit pool and report teuploading data to many different nodes. Furthermore,
number of its self-issued credits. Credo can detect no@een if a set ok adversaries, each bring inSybil identi-
that lie about the number of self-issued credits (see § fi¢s and collude by exchanging credits among themselves,
misbehaving nodes can be expelled from the systemthg maximum reputation of each colluding adversary is
the central server. at mostk - s. As seen in Figure 1, each adversarial node

When uploading data, a peer (seeder) uses the rep{faB, C) can achieve a reputation score of at most 3 with
tion scores of requesting peers (leechers) to providerdiffthree Sybil identities (A',B’,C’) despite the fact that éac
entiated service across competing leechers. Each se&#il identity has issued 100 credits.
ded|c_ates a fixed numb_er of upload slots and picks Ieegﬁz M odeling good behavior
ers with the top reputations among all requesters to servé:

After a leecher X is chosen to be served, the seeder véithough using credit diversity can bound the maximum
fies that X's credit pool size is indeed larger than that efputation score of a set of colluding adversarial nodes,
the highest unchosen leecher by transferring appropriegeh colluder can still retain its maximum reputation no
number of credits from X. Next, we describe how Credwatter how much data it downloads. That is because ev-
computes the revised credit-based reputation score to hetty- Sybil node can issue arbitrarily many new credits to
dle collusion attacks. replenish the credit pool of an adversarial node. For ex-
ample, in Figure 1, each adversarial node has 100 credits
4 Credo’'sdefense agai nst collusion  from every Sybil identity. Suppose node A has used up all
100 credits from C’ to download 100 units of data, it can
The biggest challenge facing Credo is to defend agaiasvays request for more credits from C’ to maintain the
the collusion attack where a set of colluding peers eseputation score of 3 in future downloads.
change credits to boost each other’s reputation withoufTo mitigate such sustained collusion attacks, Credo
performing any actual uploads. Unlike other types of anodels the typical behavior of honest nodes. More con-
tacks such as double-spending, colluders leave no proketely, letZ be the random variable of the number of self-
able evidence for their misbehavior. Credo employs tvigsued credits of the issuer of a randomly chosen credit.
techniques to limit the effectiveness of collusion: (a)Me measure the distribution ¢f for the overall system
credit diversity, (b) modeling good behavior. and use it to filter a node’s credit pool to obtain a subset



of credits,C’ C C, so that the distribution of the numbe(p;) can be derived from the distribution &f as follows:

of self-issued credits by issuers@happroximates the&- . N
distribution. We augment Equation 1 to use the filtered pi = Prib; < X < bit) - b
pool (') for calculating credit diversity. For an honest E(X)

node whose credit pool consists of randomly chosen cred- - Zbi§w<bi+1 Pr(X =) x
its, this filtering step has little effect. On the other hand, - E(X)

filtering significantly limits attackers’ ability to carryro < Pr(b; < Z <bi1)
sustained attacks. In Appendix A, we prove that the max-
imum downloads an adversarial node can perform with The set of lower boundg() will be used to check if
maximum reputation is - ~ - z, wheres is the number of the distributionZ’ of a given set of credi€’ is close to
Sybil identities controlled by each adversarial nogés Z- A node periodically asks the central server for the set
the average number of self-issued credits of honest issu@fr¥ower bounds every time unit. Given a set of credit
and~ is a small constant. Intuitively, this result says thé&t» & seeder can directly testaf’ satisfy the set of lower
an Sybil node can issue only- z credits in average andbounds since each credit embeds the number of credits its
send them to the adversary node; this amount of creditéSguer issued in the lasttime unit. Finding the subseY
close to the amount of credit issued by an honest nodé#rthe original credit pooC is slightly harder. A leecher
the system). can do exhausted search to find the opti@idbr its own
The central server is in charge of computing and repfgteérest. It can also perform a greedy heuristic as follow.
senting theZ-distribution periodically every time unit,  G/ven a credit pool’, we first classify each credit into
wherer the expiration time for credits. Le¥ be the ran- €7 — th bin if the number of creditsz) minted by the
dom variable of the number of credits issued by a randd@fuer of that credit is in the rangi, b; 1) as shown in
node that has issued non-zero credits. The central sefure 3. Let; be the number of credits classified to the
can easily measure the distribution &f by sampling a #-th bin. In-order for shaping the filtered pod! accord-

random subset of nodes in the system: it picks a rand8tfl {0 the measured probability density lower bounds, we
node ID and asks for one of the node’s witnesses for nufitst ensure that:
ber of credits issued by that node in the lagime period. _
There is the risk that adversarial nodes can skew the dis- IC'lpi —
tribution of X' toward the high end by using a few Sybil e start with the original credit poal and check if it
identities to issue a huge number of credits. Therefore, wgsses the test in Equation 2. If the test fails andithe
use the truncated distribution &f that excludes a Sma"th bin having the highest value ef%—, we remove one
fraction () of issuers that have issued the most credits. Agdit from thei-th bin. If there are rﬁultiple credits with
aresult, as long as the colluding set of Sybil identities §Re same issuer from that bin, we choose to remove one
not exceed fraction of all nodes, they cannot affect thg them, Otherwise, a randomly chosen credit is removed.

measured distributiof". _ We repeat this process until the test passes or no more
We model an honest node’s credit pool as a set of rafedits are left. The remaining credits fotth

domly chosen credits in the system. L&£be the random . .

variable of the number of credits issued by the issuerﬂﬁ3 Discussion

a randomly chosen credit. We expect the distribution Dhe techniques presented in 84.1 and §4.2 mitigate collu-
the number of credits minted by those issuers seen insigin but also affect honest nodes in two ways. First, if a
honest node’s credit pool to resemble thalistribution. group of honest nodes predominantly upload data to each
There is a clear relationship between distributioaind other as opposed to those outside the group, their reputa-
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that of X, namely: tion scores will be lower than their net contribution. Thus,
by penalizing certain collusive behavior, Credo also pe-
PrZ=—2) — Pr(X =z)z nalizes (hopefully rare) honest behavior that resembles

E(X) collusion. When considering a long period of time, we

expect most honest nodes to be able to upload data to a di-
The central party represengsdistribution using a set verse set of other nodes. Second, an honest seeder may not

of probability density bounds that corresponditobins, always have incentive to serve the leecher with the best
as shown in Figure 2. Let the range of th#h bin be reputation. For example, if a seeder has already served
[bi,bi+1). The ranges of the bins are chosen to so tHaecher X withrepx < 0, it will prefer serving Y over
the size of successive bins increases exponentially, Xeeven thoughrepy < repx. This is because the seeder
bbA = ~ where~ is a small constant bigger than 1. Ougan improve its diversity with a new credit issued by Y
proof of Credo’s collusion resilience relies on the choidgstead of another credit issued by.XVe can mitigate

pf 7 (Appendix A). The probability dens_ity of thieth bin 1The seeder will continue to prefer X if X has a non-zero crpdibl
is calculated a$r(b; < Z < b;+1) and its lower bound since the seeder is free to choose credits with differeneissfrom X's
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Figure 2:Credo models the behavior of honest nodes witkrigure 3:Credo limits sustained collusion attack using the
Z-distribution ¢Z is the random variable of the number ofp; test. In the example, the grey bars correspon@ tj an
self-issued credits by the issuer of a randomly chosentyrediadversarial node. The white bars correspond to the regultin
Credo representg-distribution usingn bins. C’ that fits Z-distribution (dotted lines).

this problem by counting > 1 credits from each issuer6.1 Simulations

when measuring credit diversity; the tradeoff is that the

maximum reputation score of an adversary also increa¥ég simulate a peer-to-peer content distribution network
as a result. Once a seeder ser§eshunks to a leecherof n = 3000 nodes. In our simulations, each node has
with a negative reputation, it will prefer uploading anathé@ upload limit of200K B per second. A node divides its
node. However, doing so is actually better for the globdpload capacity tal upload slots o5 0K B per second
“good” as there will be more bilateral exchange opportgach. Download capacity of a nodesigimes the upload

nities among leechers. capacity, i.e20 download slots. We control the actual up-
load contribution of a node by a parameteitlingness.
5 Detecti ng misbehavior When a node (seeder) has a free upload slot, it decides to

upload to some node (leecher) with a probability propor-
Apart from collusion, Credo also faces other attacks sugbnal to its willingness. We set the willingness of nodes
as double-spending and under-reporting of self-isstigtour simulation to follow the distribution of upload ca-
credits. Unlike collusion, these attacks leave provabie §acity as measured in [13]. We inject new files 66 B
idence for a node’s misbehavior due to the various pubfigthe system sequentially: a new file is injected when all
signatures required by the protocol [8]. Credo uses a lagydes that want the previous file have finished download-
auditing protocol to detect misbehavior. We give a feitg it. Not every node wants every file; instead, each node
example detections and omit the rest of the details duenigs a particular demand. When we inject a new file, we
space constraints. To detect double-spenders, each ngiighse300 nodes to download the file. The probability
periodically reports a credit it has gotten from peer X #at a node is chosen is proportional to its demand. We
X's witness nodes (Credo uses a DHT [17] to decide Xtaodel the demand of nodes follows the demand distribu-
witness nodes). When X double-spends a credit to bothi¥n in the Maze file sharing system [22]. We also choose
and Z, the witness nodes of X will receive two signaturg random other nodes as the initial seeders. We choose
chains that show X has signed the transfer of the sagienodes to be adversaries. Each adversary node controls
credit to both Y and Z, thereby provably detecting X’s Sybil nodes. They collude with each other to form a
misbehavior. Similarly, we can also detect if a leecher hggllusion size 0f90, i.e. < 5% of the system. In every
under-reported the number of its self-issued credits or if-a= 3 days interval, the Sybil nodes issue credits with
peer has issued the same credit multiple times. We usetthe optimal amount such that the adversaries’ credit pool
protocol in [8] to catch deviant nodes during the procegspass theZ-distribution test, i.e. achieving the bound in

of exchanging chunks for credits. Observation A.1. The credits are divided equally to the
L . adversary nodes. Adversaries use those credits to down-
6 Preliminary Evaluation load files. We vary the the number of files tB@ adver-

saries want to download in interval in different runs of

I(r:1 tZ'S, sectlor:,tyve dem(;]nst_rate using 5|fm|L|JIat|oHs ?%’e simulations. Our simulation stops after simulating the
redo’s reputation mechanism successfully reflec Sp@er-to-peersystem faryear.

node’s net contribution and is resilient to collusion. Wgin® , )

incentivized to act as seeders. Credo reputation score reflects a node net contribution
correctly if nodes follow the protocol. The slope of the
credit pool to improve its diversity. curve for the negative net contribution region is bigger
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Figure 4:Reputation of colluding adversaries and honest nodeggure 5:Download time of colluding adversaries and honest
as a function of net contribution. nodes as a function of net contribution.

than that for the positive net contribution region because
we setp = 2. A node with negative net contribution usu-

ally has empty credit pool. Downloading one data chunk
decreases its net contribution by 1, and decreases its rep
utation by 2 since it has to issue new credit. On the other 1é
hand, nodes with a positive net contribution can spend one
credit in their credit pool to download a chunk resulting in
decreasing both net contribution and reputation by 1.

In Figure 4, we also plot the reputation of the adversary
nodes in different simulation runs with the different num-
ber of files they want to download. Because the advers&igure 6: Cumulative distribution of download time two sce-
nodes never upload to other nodes, their net contributiorsio: 1) nodes stay online and continue upload to others, 2)
are always negative. Their maximum reputation scorerigdes go off line immediately after getting a file.

90 because there ap@ Sybil nodes in this simulation. The

Sybils issuel 39 credits in average in the optimal strategyario, nodes run the original Azureus BitTorrent. They go
making each adversary hold 7 credits. When an adver-off line immediately after their download completes.

sary node downloads more thafiles in oner interval,it e inject a25 MB file to one seeder at the beginning
issues new credits and the reputation drops bélow  and other nodes arrive to download the file one at a time

In Figure 5, we plot average download time as a funevery 15s. We set the application limit throughput us-
tion of the net contribution for both adversary nodes &gy the distribution in [13] and the download throughput
well as honest nodes. As expected, honest nodes Wiithit is 5 times the upload limit. In the Credo version of
higher net contribution get better download times. Thiszureus, a leecher pays one credit to a seeder after down-
creates incentive for nodes to contribute more. Advdoading250 KB from the seeder. Figure 6 plots the cu-
saries can get better download times from collusion bwtlative distribution of complete download time in both
the download times cannot be better than honest nodesnario. We observe that both the average and the me-
with a net contribution 00. dian download time improve significantly when nodes are

incentivized to stay online using Credo in scendridhe
6.2 PlanetL ab deployment average download time drops frdig5 seconds (scenario
We have a preliminary implementation that integrat@ét0347 seconds (scenario 1). The median dow_nload time
Credo credit-based reputation system into the popuf$© drops fron38 seconds ta 72 seconds. This result
Azureus BitTorrent client. We keep the bilateral exchan%@o‘{"s that the aggregate capacity of the system improves
protocol between nodes intact and only modify the pr .7 times when nodes are incentivized to contribute.
tocol between seeder and leecher: exchanging data chgnk :
for credit, picking the top reputation leecher to unchokzn Conclusion
We have deployed the system on PlanetLaBtihnodes. This paper describes the design of Credo, a robust credit-

To examine the real performance benefits when nodessed reputation system that address the seeder promotion
are incentivized to contribute, we compare two scengroblem in P2P CDNs and is robust in the face of collu-
ios. In the first scenario, nodes run our modification sfon attacks and Sybil attacks. Credo addresses the limi-
Azureus BitTorrent that integrates the Credo protocations of existing reputation and currency-based systems
Nodes are incentivized to serve other nodes in orderand Credo’s credit-based reputation mechanism better re-
gain reputation after downloading a file. In the second sdkects a nodes’ true net contribution.

© o o ©°
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= 7 B(X) 4)

In Inequality 4,y is determined by the number of cho-
sen bins {n) such thaty = bibF for all <. Moreover, In-
equality 4 holds true for all. As the last step of simpli-
fication, we use the property that for any given positive
numbersa, b1, ¢1, ba, co, if a < f% and a < lc’—z then

a < % Applying this observation to Inequality 4 for

= ¢

all 7, we obtain:

E(X') <v-E(X) (5)

Because the total number of credits issued by Sybil
identities isk - s - E(X'), each adversarial node gets at
mosts - E(X’) credits which is less than - v - F(X).

By definition, E(X) is the expected number of credits for
the truncated distribution after excludingn top issuers.
Since we assume the number of colluding adversaries is
lesso - n, the number of honest nodes is greater thian

d)n. Hence,z > E(X) wherez is the expected number

of credits issued by an honest node that issues non-zero
credit. Thus, we deriv&(X’) < s -~ - Z.

It is interesting to note that, for a given ranfig, b,,]
of a truncated distribution ok, the system parameter of
the number of binsi() uniquely determines. Specifi-

cally,y = 7/ ’;)—g Therefore;y decreases as we increase
the number of binn, improving the bound on sustained
collusion attacks. However, when is too large, we also

risk filtering out too many credits from a honest node’s
credit pool unnecessarily.



