Relaxed consistency, continued

Jinyang Li

some slides are from Haonan Lu’s talk on existential
consistency

Spectrum of Consistency Models

Eventual
Consistency

Causal

Consistency

What we’ve learnt last time:

Bayou achieves

e causally consistent
replication in the face of
disconnected operations

easier to program

Sequential

Linearizability
[Herliny]
(aka external

Consistency Consistency)

[Lamport]

Today’s topic: relaxed consistency for
geo-replication

IRELAND BENJING
FRANKFURT
OHIO (Coming soon) SEOUL
OREGON
UK (Coming soon)
N. CALIFORNIA NINGXIA (Coming soon)
N. VIRGINIA TOKYO
INDIA (Coming soon)
AWS GOVCLOUD
SINGAPORE
SAO PAULO
Region &

Number of Availability Z
umber of Availability Zones SYDNEY

New Region
Coming Soon

Why geo-replication?

 Why replicate across geographic regions?
* Low latency (esp. for reads)

— users read from the closest data center

 Disaster tolerance

— Operator mistakes:
 AWS us-east-1 region outage in Feb 2017

— Natural disaster: Hurricanes, earthquakes

Why not supporting linearizability

v/Scalability
X Low latency -
“}‘b
/ e > \

(e i (e nmmj

Write X Tl
3\

Why not causal consistency?

e Scalability?
— Bayou is not scalable (requires full replication at every
node)

— Recent protocols allow sharded implementation
e COPS [SOSP’11] Occult [NSDI'17]
* Track lots of dependencies or large vector timestamps

* Low latency?
v/ Writes
MReads (not always in COPS and Occult).

o If write X2 write Y, client reads the new value of Y, then it
needs to wait for X's write as well.

Today’s reading #1: PNUTS

PNUTS: Yahoo!’s Hosted Data Serving Platform

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver and Ramana Yerneni
Yahoo! Research

ISTRACT

describe PNUTS, a massively parallel and geographi-
y distributed database system for Yahoo!’s web applica-
1s. PNUTS provides data storage organized as hashed
ordered tables, low latency for large numbers of con-
rent requests including updates and queries, and novel

recnrd enngictencv onarantees It i a hneted rcentrallv

Yahoo!’s internal SLAs for page load time, placing stri1
response time requirements on the data management
form. Given that web users are scattered across the g
it is critical to have data replicas on multiple continen
low-latency access. Consider social network applicatic
alumni of a university in India may rcside in North Am
and Europe as well as Asia, and a particular user’s data

VLDB 2008

State-of-art industry solutions before
PNUTS

* Amazon’s Dynamo key-value store
— Eventual (but not causal) consistency
— Ensures replica convergence

* Good performance

— Writes is stored at any replica which returns
immediately

— Reads can also be processed by any replica
* Published at SOSP 2007

Why not eventual consistency?

U2is Url i;
applied at aRpp Ile azt
T eplica-
Update X with U1 Update X with U2 Replica-2

~~

Read X = U2(Xo) Read X=U1(U2(Xo))

Ul is sent to U2 is sent to

PNUTS’ consistency model

* Per-record timeline consistency

* All updates to a given record/object are
applied in the same order at all replicas

Update X with Ul Update X with U2

Read X = U2(Xo) Read X=U1(U2(Xo))

G @
Ul is sent to U2 is sent to
Replica-1 Replica-1

Replica must apply Ul before U2

How PNUTS’ consistency is
implemented

All client writes are 3
forwarded to master |

—

l

Mastef of X Replica of X
i i e mm mm e e e me o we W me e o me W W W W --EE-—E’i i
Replica of Y Insert X vi.1 Master of Y

Update X vl.2 E ;
(e Update X 13| N

Delete X v2.0

Insert X v2.1 s

: * sequences all writes

(generation#, update#)
e asynchronously replicat
to others

PNUTS’” APIs

Read-any

— read from any replica (possibly a stale value)
Read-critical(required version)

— must read a version that’s >= required version

Read-latest
— read the most recent copy of data

Write

Test-and-set-write(required_version)

— Perform write at master iff present version of record
is same as requred_version

Per-record timeline consistency vs.
sequential consistency

» Per-object Sequential consistency

— all operations to a single object can be serialized
w.r.t. each other

— the issue order of operationsto a single object for a
given client is preserved.

* Per-object sequential consistency can be
achieved in PNUTS by

— Client tracks latest-version written/read. Use
read-critical APl for reads

The hierarchy of consistency

e Relative order of consistency models

Linearizability Sequential Consistency

Causal consistency ----2)-.-. Per-object
§ sequential consistency

Eventual
consistency

Consistency example

Write X=1 Read Y=1

\

", Write Y=1 Read X=0
i

* ¢/ Sequential consistency
* X Linearizability

Consistency example #2

Write x=1 ~ Write X=2

“3
& Read X=1 \rite Y=1
.
“3
;) Read Y=1 Read X=0 Read X=1

Read X=2

* ¢/Per-object sequential consistency
* X Sequential consistency
* X Causal consistency

Consistency example #3

Update X
‘ ‘ with U1 Read X=U1(Xo) Read X=U2(U1(X0))
—~ Update X _
/_\d —_
b with U2 Read X=U2(Xo) Read X=U2(U1(X0))

* ¢/Causal consistency
* X Per-object sequential consistency

PNUTS’ system architecture

Determines 1) record to tablet mapping
2) tablet to server mapping

J Regionl L Region 2
‘J Routers Message Routers ‘J
Tablet .. brpleer Tablet
controller /’ controller

caches tablet controller’s
mapping info

o J

Storage units Storage units

/

Data is sharded across many servers

PNUTS’ system architecture
2

Region 2

_J

Tablet
controller

Storage units ' Storage units

PNUTS’ sharding

* Un-ordered table
— Compute n-bit hash of key: hash(key) = [0...2”n)

— tablet# = hash % total number_of tablets
* Not used by PNUTS

 Ordered table

— Controller maintains key intervals of all tablets
— Controller splits a tablet if it becomes too large

Tablet 1 Tablet 2 Tablet 3 Tablet 4 Tablet 5

"banana"
"lemon"

Hpmch"

1 apevl

MIN _STRING
MAX STRING

SU 3 SUlI SU3 SU 2 SU 1

PNUTS’ failure tolerance

* Master replica failure
— Re-generate a new replica somewhere else

— writes-in-transit are not lost because they are stored
in YMB (internally replicated across multiple
machines)

e Tablet controller failure
— it is consistently replicated to a backup controller

* Region failure

— Writes-in-transit are not available (if failure is
temporary) or lost (if failure is permanent)

Reading #2:Measuring consistency
violation

Existential Consistency:
Measuring and Understanding Consistency at Facebook

Haonan Lu*", Kaushik Veeraraghavan', Philippe Aj‘oux"‘, Jim Hunt',
Yee Jiun Song’, Wendy Tobagus™, Sanjeev Kumar', Wyatt Lloyd™”

“University of Southern California, TFacebook, Inc.

Abstract

Replicated storage for large Web services faces a trade-off
between stronger forms of consistency and higher perfor-
mance properties. Stronger consistency prevents anomalies,
1.c., unexpected behavior visible to users, and reduces pro-
gramming complexity. There is much recent work on im-
proving the performance properties of systems with stronger
consistency. vet the flin-side of this trade-off remains elu-

1. Introduction

Replicated storage is an important component of large Web
services and the consistency model it provides determines
the guarantees for operations upon it. The guarantees range
from eventual consistency, which ensures replicas eventu-
ally agree on the value of data items after receiving the same
set of updates to strict serializability [12] that ensures trans-
actional isolation and external consistency [25]. Stronger

SOSP 2015

Why measuring consistency
violations?

* Once the system relaxes consistency, it exposes
certain anomalies to applications.

 Are anomalies prevalent or rare in deployment?

— How frequently anomalies occur, depends on

* how fast asynchronous replication finishes
* how frequently writes occur

— Types of anomalies?
— Answered empirically through measurements.

Facebook’s distributed storage: TAO
graph database

= &

I Nathan

At the summit — at Charlotte Dome.

Like - Comment

Carol and 3 others like this.

[Alice
« how was it? is it worth the long approach?
Like - More -

Web Server (PHP)

USER

i ' Nathan

LOCATION

Charlotte Dome.

COMMENT

ow was it? is it worth the |
Like - More -

iPhoto

slide from Facebook’s TAO talk

Web
Servers

Leaf
Caches

Root
Caches

Databases

TAO internals

Region A

8 1
KA‘ / \ Vi
6' \ 6, 7'\ 7
6 S 2
Master | Slave
4 14 3
5 4
I
5! sl —
-7 Master |~ T~~ |
Region B Region C

- = < asynchronous

—p synchronous

1. Per-object sequential consistency for writes
2. Read-after-writes within a cache
3. Eventual consistent reads across cache

Measurement setup

e Collect traces on web servers
— No modification to TAO

* Measurement can be very expensive
— TAO handles 1 billion requests/sec

e Solution: Sample on objects:
— Object: vertex in social graph
— Log all requests to sampled objects

— Sufficient to detect violations of local consistency
models

Local Property Enables Sampling

e “..the system as a whole satisfies P whenever each
individual object satisfies P.”[1]

Local consistency models can be

checked on a per object basis

* Local
— Linearizability
— Per-Object Sequential consistency
— Read-After-Write

* Non-local:
— Sequential consistency
— Causal consistency

[1] M. P. Herlihy and J. M. Wing “Linearizability: A Correctness Condition for Concurrent Objects.” ACM TOPLAS, 1990

Logging Details

* Logged information:
— Start time
— Finish time
— Read or write

Writeg(valu
— Value: match read with write IM

e Sampling rate: 1 out of 1 million objects
~100% of requests to sampled objects

What about clock skew?

* Clock skew across web servers
— 99.9 percentile for 1 week: 35ms

* Add slack time to request’s duration

— Subtract 35ms to invocation time, add 35ms to
response time

— Result in more overlapped requests

— Anomalies detected represent a lower bound of
true anomalies

Checking for linearizability violation

* Violations of linearizability boils down two
types of anomalies

e Stale read anomaly:

write X=1
Read X=1

write X=2

* Total order anomaly:

write X=1 Read X=1

write X=2 Read X=2

Linearizability Checker

* Graph captures state transitions
— Vertex: write operations
— Edge: real-time order

* Merge read with its write
— Captures state transitions seen by users

 Anomaly if merge causes a cycle
— Cycle indicates user’s view # system view

Examples: detecting read-after-write
violation

write X=1
Read X=1

write X=2

@ o—e

‘merge
e—0

Examples: detecting total order

violation
write X=1 Read X=1
write X=2 Read X=2

‘ merge

Linearizability Results

* Trace statistics (12 days, 17 million objects, 3
billion requests)

* 5anomalies per million reads

— Would have been prevented by a Paxos-based
implementation at the cost of higher latency

* Lower bound
— Because of clock skew adjustment

Linearizability Results
Read-after-write Violations

. \ -
* 4 per million reads ‘)
Post (new) Réad

Post (hew) Post (new)
starts finishes

Replica A: l\/l

Master M: ~==.] >
yuin etab\e'

Replica B:

>
oot

Linearizability Results
Total Order Constraint Violations

N .
* 1 per million reads i i
Comment(H) Comment(W)

& ./

H starts H finishes | Read (H) I
Replica A: >
Master M: g
Replica B: >

W starts W finishes | Read (W) | %

Per-Object Sequential Results

* 1 anomaly per million reads
— User session constraint (1 per 10 million)

e Users should see their writes

37

Anomaly bounds

Linearizability
5 per million reads

l

Sequential
consistency

‘ Causal ‘

T~

Per-Object Sequential
1 per million reads

Summary

* Per-object sequential consistency (for writes) is
commonly used in industry
— No write-write conflict (No need for conflict resolution)
— simple/efficient to implement (compared to causal

consistency)

* Certain local consistency property violations can be
measured at scale
— read-after-writes
— total-order-violation

— read-your-own-writes

