Paxos

Jinyang Li

Some slides are adapted from Ousterhout and Ongaro



What we’ve learnt last time

e Strong consistency model: linearizability

— execution is equivalent to a serial history that
preserves global completion-to-issue order

* How to implement linearizability
— no replication
— viewstamp replication



Consensus € -2 consistent replication

* Consensus allows a set of nodes to agree on
something

* Consensus € -2 Replica servers agree on the
same sequence of operations for execution
<2 Linearizable system



Paxos solves the consensus problem

Search TYPE HERE

Gem)  AM. v@snee f*'lif» g

( -‘ﬁ 3
: - . ‘.'. . 1
MORE ACM AWARDS - e ~,.€1

AWARD A 8 2 &

-t

A.M. TURING AWARD WINNERS BY...
YEAR OF THE AWARD

LESLIE LAMPORT {J

United States — 2013

CITATION

For fundamental contributions to the theory and practice of distributed
and concurrent systems, notably the invention of concepts such as causality
and logical clocks, safety and liveness, replicated state machines, and
sequential consistency.

™ ™ ™ ™



Single-decree consensus

* Problem Setting
— n nodes, each with a (potentially different) input
— one or more nodes may fail

— network is asynchronous (cannot tell node crash from
slow communication)

* Goal
— Safety (chosen values by different nodes are the same)
— Liveness (all live nodes eventually choose some value)



Single-decree consensus

P

asynchronous Let’s eat
Let’s eat at communication t KEC
Starbucks o ® :
o
/ ” nodes have
QGQ different inputs

A\

a2 )

Let’s eat at
McDonald




Strawman #1

Starbucks

McDonald’s
* Every node sends its value to a designated node

* Every node chooses the first value seen



Strawman #2

* Every node sends its value to a designated node
(acceptor)

* Acceptor chooses the first value



The FLP [1985] impossibility result

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts
AND

MICHAEL S. PATERSON

No deterministic server logic
can solve consensus

s y
puralleh.sm H.2.4 [Database Mamgcmem] Systcnw—dutnbutcd sy.sttm.r lran.sacnon processing
General Terms: Algorithms, Reliability, Theory

Additional Key Words and Phrases: Agreement problem, asynchronous system, Byzantine Generals
problem, commit problem, consensus problem, distributed computing, fault tolerance, impossibility
proof, reliability



Paxos components

Proposers
— active role (send RPCs)

Acceptors
— passive role (responding to RPCs)

Learners

— passive role (learn about outcome of consensus)

To simplify, we assume each server takes both
the active and passive role



ldea #1: choose a value if a quorum of
nodes accept

!g! accept v1? } vl accepted v3 rejected
S1
vl accepted v3 rejected
\\ Yy
N
@ / \
S3 v3 accepted V1 rejected

A node sends out a proposal p to every node
 Each node accepts the first proposal seen
* |If a proposal is accepted by majority of nodes, its value is chosen



Problem: split votes

vl accepted

Solution? Try again! = Each node has to accept
more than one proposall



Danger of accepting more than once

vl accepted
S

v3 accepted

vl accepted

v3 accepted

/

S23 vl accepted v3 accepted

* To ensure correctess:

— If a proposal p is chosen, then all subsequent accepted
proposals must have the same value as p



ldea #2: Totally ordered proposals

* Each proposal is identified by a globally
unique proposal number

* Proposals can be totally ordered
e Paper’s suggestion:
— proposal number = local counter + server-id

1.51<1.52<1.53<251<2.S52<2.S3«<...

local counter server ID



ldea #2: Totally ordered proposals

e Paxos Invariant (P2b in paper)

— If proposal p is chosen, then for all p’>p, p’.value =
p.value

* = a proposal cannot blindly use the server’s input
value, it needs to use a safe value.
* How to discover a safe value?

— Use an extra round of communication to find out safe
value



Basic Paxos

* Two phase protocol

* Phase-1 (Prepare)

— A server picks a proposal number and tries to
discover a safe value for it

* Phase-2 (Accept)
— Send the proposal to all for acceptance



Server state
* highestNum
e acceptedNum
* acceptedVal

Prepare-phase RPC handler for Prepare(n)

* Choose new proposal number n * If n> highestNum
— n = {highestNum.counter +1, server-id} — highestNum =n
« Send Prepare(n) to all servers — return {OK, acceptedNum, acceptedVal}
 If receiving majority OK replies * Else
— val = safe value found in majority OK relies — return {NotOK}
Else :

— retry from beginning

Accept-phase

 Send Accept(n, val) to all servers
RPC handler for Accept(n, val)

* If n>=highestNum
; — highestNum =n
Else — acceptedNum =n, acceptedVal = val)
— Retry from beginning —  return {OK}
 Else
— return {NotOK}

* If receiving majority AcceptOK replies

— valis chosen



Why majority quorum?

 Why requiring a majority AcceptOK?

— No proposals can be chosen without intersecting
at a common node

* Why requiring a majority PrepareOK?

— If a proposal has been chosen (accepted by a
majority), it’'ll be among a majority of PrepareOK
relies.



How to find a safe value v

Each prepareOK returns the highest proposal
less than n that has been (or will be) accepted

Qprepok = set of PrepareOKs from a majority
If none in Qprepox has an accepted proposal
— V = proposer’s own input

Else

— v = value of the highest proposal in Qprepox



How to find a safe value v

Proof of Paxos invariant: if proposal m with v is
chosen, then any proposal n > m has value v.

Proof: By induction. Let’s suppose invariant holds
for n-1.

Let p = highest proposal in Qprepok, then m3[<

Since all proposals [m,..., n-1] have value ¥ (b
induction), the highest proposal in Qprepok have v.

Because p’s prepare-quorum
intersects with m’s accept-quorum

Because acceptor rejects n
if it has seen a higher proposal




Basic Paxos Examples
Three possibilities when later proposal prepares:

1. Previous value already chosen:
— New proposer will find it and use it

“Accept proposal 4.5
with value X (from s;)”

1 ...... P31

| P :p 3.1

values S3 e P3.1
| Sp e :p 45 {A 45X ............................................. -
5 ...................................................... :p 45 {A 45X ............................... e

“Prepare proposal 3.1 (from s,)”



Basic Paxos Examples, cont’d

Three possibilities when later proposal prepares:

2. Previous value not chosen, but new proposer sees it:
— New proposer will use existing value
— Both proposers can succeed

)
[)C_.Sl ...... P31 | A 31X [ >
 S—
\
Sy
values S3
a A a A
S4 ....................................................... P45 LAA 4.5 X e >
' . 7 . 7
a A a A
5 ....................................................... P45 LAA 4.5 X e T >
. J . J tlme




Basic Paxos Examples, cont’d

Three possibilities when later proposal prepares:

3. Previous value not chosen, new proposer doesn’t see it:
— New proposer chooses its own value
— Older proposal blocked

|X ‘_'Sl ...... P3.1 {A 3.1 X ] .............................................................................................. -
] ) )
S2 ...... P31 e A 3L X e -
) — N————
) )
values S3 ...... >3 Ty [ O P45 -AA 3 A4S Y e >
) — ) S—
S4 ....................................................... P45 LAA 45 Y e >
' .
5 ....................................................... P45 AQSY | >
time




How does Paxos “get around” FLP
impossibility?

* Paxos is not a deterministic algorithm
* Proposer retries with a randomized delay

* No guarantee that consensus is reached in a
fixed amount of time (with high probability)



Liveness

 Competing proposers can livelock:

......................... %31x

1P 3.5

........................

........................

P3.5

P3.5

....................................................

....................................................

:P 4'1 ....................................................
:P 4'1 ....................................................
) . &
. 7 v V
A35Y [~P55
A35Y [~P55

..........................

..........................

..........................

.....................................................

.....................................................



How can a crashed node rejoin safely?

* All Paxos state must be persisted durably
— highest proposal number seen
— highest accepted proposal (number and value)



Multi-Paxos: agreeing on a
sequence of values



Multi-Paxos builds on top of basic
Paxos

* How to implement Replicated State Machine
— replicating a log of operations consistently

* The naive approach:

— Run a separate instance of Paxos to agree on the
value for each log index

— Each instance of Paxos has its own copy of state

* highest proposal seen
e accepted proposal number
» accepted proposal value



Naive MultiPaxos

e Server can only execute i-th op if:
— i-th Paxos instance has chosen a value
— i-1-th op has been executed

& X

3/




MultiPaxos uses a distinguished
proposer (aka leader)

instance=3

@ prepare 19.51
\



MultiPaxos uses a distinguished
proposer (aka leader)

instance=3

@ accept 19.51, val=x

S2

S3



MultiPaxos uses a distinguished
proposer (aka leader)

1951

S2 X
19.s1

S3



Leader batches Prepare-phase for
many instances

‘ instance=[3, o°]
prepare 19.51
(510 \
S2
o | S3
(

* Allinstances can share the state: highest proposal number
seen

* —> Batch prepare needs only one proposal number



Leader batches Prepare-phase for
many instances

X instance=3
@ accept 19.51, val=x
S2

&N /Y| S3

(

* Allinstances can share the state: highest proposal number
seen

* —> Batch prepare needs only one proposal number



Leader batches Prepare-phase for
many instances

\
bx

instance=3 instance=3

@ accept 19.s1, val=x accept 19.s1, val=y

S2

‘D Y| S3
i

e Efficient: leader only needs to run the accept-phase
to replicate an operation during normal time



MultiPaxos runs multiple instances
concurrently

19.s1 19.s1 19.s1
S2 X
19.s1
S3 Z
19.s1
“8
i

e Can run accept-phase of many instances concurrently
* - the prefix of chosen values are not contiguous



MultiPaxos leader switch-over

H=
w
H

195t 19.51

S2 X
19.51

(s30) : |

19.51

instance=[3,4][6,°°]
prepare=20.5S3

 New leader will try to commit all started (but non-chosen)
Instance

* Pick value = no-op if there are no client commands to fill a
particular started-but-non-committed instance



Configuration change

e So far, we have assumed a static configuration
— Set of nodes participating is fixed

* Configuration change is needed:
— Remove failed machine

— Add a fresh new machine



Challenge in configuration change

 Danger: majority quorum of old configuration
does not intersect with majority quorum of
new configuration

New Configuration
A

4 A
Choose v, using :{D [ ]E :’[ ] [ ] [ ]i Choose v, using
old configuration l\____________j J J U ! new configuration
1\ J

Old Configuration



Configuration Changes, cont’d

* MultiPaxos solution:
— Use the RSM log to manage configuration changes:
— Configuration is stored as a log entry
— Configuration for choosing entry i determined by entry i-a.

Suppose a = 3:
1 2 3 4 5 6 7 8 9 10
C1 C2
1\ v J U v J U v J
* Notes: Use C, Use C, Use C,
— a limits concurrency: can’t choose entry i+a until entry i

chosen

— Issue no-op commands if needed to complete change
quickly



