Linearizability

Jinyang Li

Consistency model

* Consistency model = meaning of operations in
the face of concurrency and failure

— A contract between system designers and
application programmers

— A set of rules dictating what allowed system
behaviors are

Spectrum of Consistency Models

Easier to achieve

200d performance easier to program

Weak/relaxed

Linearizability
[Herliny]
Causal Sequential (3ka external

Consistency Release Consistency ;
Consistency Lamport] Consistency)

Eventual
Consistency

Consistency models are abstract

* Independent from any implementation

 Why specifying an abstract consistency model?

— Application programmers do not have to understand
the system implementation

— System developers can reason correctness of
implementation & optimizations
e add caching
» add replication
* shard data across machines etc.

Application programmers’ expectation

Thread-1 Thread-2
(running on client machine 1) (running on client machine 2)

Put(“x”, 1); Get(“Y”)="?;
Put(“y”, 1); Get(“X”)="?;

 What are expected values for Gets?

* Put(x,1), Put(y,1), Get(y)=1,Get(x)=1
* Put(x,1),Get(y)=0,Put(y,1), Get(x)=1

* Get(y)=0,Get(x)=0,Put(x,1),Put(y,1)

— 6 potential interleavings:
— 3 potential readings: (x=0,y=0) or (x=1 y=1) or (x=1 y=0)

A strawman key-value store

client-1 Put(x,100)

client-2 Get(x) = 100

e System implementation:

— Clients send writes to both replicas in parallel,
wait for the fastest reply

— Clients read from either replica

Does strawman satisfies programmers’
expectation?

* Programmers’ expectation: 3 read values
— (x=0,y=0), or (x=1, y=1), or (x=1, y=0)

* |s the expectation fulfilled w/ a single server
replica?

* |s the expectation fulfilled w/ 2 replicas?
— Is x=0,y=1 possible under strawman?

How to define a strong consistency model?

simple abstract mental model

e “Sequential” behavior
* “One-copy” of data

Reality

* Concurrent execution
* replicated data

How to define a strong consistency model?

* Reduce a concurrent history to an equivalent
serial execution history

client-1

client-2 S-S s A I

How to define a strong consistency model?

* Not all equivalent serial execution history
“make sense”

client-1

Put(x,1) Put(y,1)

client-2 | |

Get(y)=1 Get(x)=0

What are allowed equivalent serial

history?

* Certain orders in the original execution should
be preserved in the equivalent history

 What are possibilities?
1. Global op issue order

B W N

Global op completion order
per-thread issue (and completion) order
global “completion-to-issue” order

Client-l O O

Put(x,1) Put(y,1)
client-2 . I
Get(y)=0 Get(x)=1
1 | 1 |
Put(x,1) Get(y)=0 Put(y,1) Get(x)=1

Global issue order

Global completion order

Per-thread issue (and completion) order
Global competion-to-issue order

N XXX
W e

Client-l O O

Put(x,1) Put(y,1)
client-2 . I
Get(y)=1 Get(x)=1
I —— ——
Put(x,1) Put(y,1) Get(y)=1 Get(x)=1

Global issue order

Global completion order

Per-thread issue (and completion) order
Global completion-to-issue order

N > X
~rWN R

client-1

client-2

Get(y)=0

>x S > X

BN e

Global issue order

Global completion order

Per-thread issue (and completion) order
Global completion-to-issue order

client-1

client-2

Get(x)=0

*x X X X
B WN PR

Put(x,1) Put(y,1)
Get(y)=? Get(x)=?
Put(x,1) Put(y,1) Get(y)=1

Global issue order

Global completion order

Per-thread issue (and completion) order
Global completion-to-issue order

Strong consistency models

* Preserving global issue/completion order is
impractical

— =2 extreme blocking behavior

Can not complete Put(y,1) without
waiting for Put(x,1) to finish 2>
block on arbitrary machine

client-2

Strong consistency models

* Sequential consistency

— equivalent serial history must obey per-process
issue/completion order

* Linearizability

— equivalent serial history must obey global
“completion-to-issue” order

 Which one is stronger?

1. Global issue order
2. Global completion order

stronger

4. Global completion-to-issue order (Linearizability)

stronger

3. Per-thread issue (and completion) order (sequential
consistency)

Sequential consistency vs.

linearizability
client-1
Put(x,1) Put(y,1)
client-2 S O
Get(y)=? Get(x)=?
Get(y)=0 GEt(X)=0 PUt(X,l) Put(y,l)

sequentially

consistent but not
linearizable

Sequential consistency vs.
linearizability

e Does the difference between the two matter?

— Matters only when external communication between
threads could be present

client-1
Put(x,1)

client-2

Get(x)=1
* Both are equally good w/o external communication

— e.g. Multi-threaded programs sharing sequential
consistent global memory

Why linearizability is a good strong model?

* |tisstrong
— Strongest possible practical model

* |t allows scalable system design

— (the local property) if each object is linearizable,
then the whole system is linearizable

— Scale system = shard objects across servers

Recap exercise: which of the following
histories are linearizable?

@ client-1: Put(x,1) Get(x)=1 Get(x)=1
client-2: Put(x,2) Get(x)=2
. Put(x,1) Get(x)=1 Get(x)=1
(b) client-1. s—— T S
client-2: Put(x,2) Get(x)=2

. Put(x,1) Get(x)=1 Get(x)=1
(©) client-1: o ——
client-2: Put(x,2) Get(x)=2
. Put(x,1) Get(x)=1
(d) client-1. s —— —
client-2: Put(x,2) Get(x)=2

What are the implementations of
linearizability

e Case-study: key-value store
— Single server
— N servers: server-i stores keys, k mod N =i

— 3 servers replicating data using viewstamp
replication

write(x,1) read(x) write(y,2) write(x,3) read(x)

How about this optimization

* Viewstamp with read optimization.
— read at any arbitrary server

read X=0
write X=1

— read at the primary

\ \/
read X=0
write X=1

The “correct” VR read optimization

viewchange does not proceed
because of valid lease

Strong consistency models in practice

* The memory model of Intel CPU?
* Popular key-value stores

—S3

— Dynamo

— MySQL with asynchronous replication

