Transactions and 2-phase-
commit



What we’ ve learnt so far...

» Consistency semantics for single-op,
single-object access

— linearizability, sequential consistency

— eventual/causal consistency, per-object
sequential consistency

* Providing failure tolerance for linearizable
storage
— Paxos, Raft, Viewstamp replication



Today’s topic: transactions

* Application perform multi-operation, multi-
object data access

— Transfer money from one account to another

— Insert Alice to Bob’s friendlist and insert Bob to
Alice’s friendlist.

* What if?
— Failures occurs in the middle of writing objects
— concurrent operations race with each other?



ACID transactions

A (Atomicity)
— All-or-nothing w.r.t. failures
C (Consistency)

— Transactions maintain any internal storage state
Invariants

| (Isolation)
— Concurrently executing transactions do not interfere

D (Durability)

— Effect of transactions survive failures



The Recovery Challenge

X = Read(Ag%<

y .= Read(B)
T1: Transfer $100 from Ato B Write(A, x-100)
Write(B, y+100)

A T1 fully completes or leaves nothing
e D once T1 commits, T1's writes are not lost

o | no races, as if T1 happens either before or after T2
« C preserves invarants, e.g. account balance > 0



Solution: WAL logging

 Write-Ahead-Logging (WAL)

— All state modification must be written to log
before they are applied

* Simplest WAL: REDO logging

— Only stores REDO information in log entries
— transactions buffer writes during execution

* This requirement is easy to satisfy now, but not the
case in 80s/90s when memory capacity is very low



Example using REDO-log

T1: transfer $100

x:= Read(A) // x=300
y:= Read(B) // y=200
Write(A, x-100) // A<200
Write(B, y+100) // B&300

Commit
system flushes log B<-300 is written
to durable storage to global storage
T1lissues  system appends A<200 is written T1’s commit
commit T1’s entry to log to global storage returns

L V i

.... To: A€300 Ti: A€ 200, B< 300

>



Example using REDO-log

System state at recovery

REDO REDO
Log contains F1, TO, T1 TO _ T1
Latest checkpoint state F1;:————> Globalstate: "= Global state:
A=0. B=200 A=300, B=200 A=200, B=300
system flushes log B<300 is written
to durable storage to global storage
T1lissues  system appends A<200 is written T1’s commit
commit T1’s entry to log to global storage returns
\L ‘L \"4 - N N \L )
checkpoint

F1 To: A€300 Ti1: A< 200, B< 300



The Concurrency Control
Challenge

T1: Transfer $100 from Ato B
T2: Transfer $100 from Ato C

* A T1 completes or nothing (ditto for T2)

* D once T1/T2 commits, stays done, no updates lost
o | no races, as if T1 happens either before or after T2
« C preserves invarants, e.g. account balance > 0



Concurrency control challenge:
problematic interleaving

T1: Transfer $100 from Ato B T2: Transfer $50 from Ato C
X:= Read(A) x:= Read(A)
y:= Read(B) y:= Read(C)
if x> 100 { if x>50 {
Write(A, x-100) Write(A, x-50)
Write(B, y+100) Write(C, y+50)
Commit Commit
} else { } else {
Abort Abort
} }
T1: x=Read(A)=100 T1: x=Write(A,0) T1: x=Write(B,200)
A: 100 A: 50
B:100 T2: x=Read(A,100) T2: x=Write(A,50) | T2:x=Write(C,150) B:200
C:100 C:150

>




|deal isolation semantics:
serializability

» Definition: execution of a set of transactions
IS equivalent to some serial order
— Two executions are equivalent if they have the

same effect on database and produce same
output.




Conflict serializability

An execution schedule is the ordering of
read/write/commit/abort operations

x= Read(A)

y= Read(B) x= Read(A)
Write(A, x+100) y = Read(B)
Write(B, y-100) Print(x+y)
Commit Commit

A (serial) schedule: R(A),R(B),W(A),W(B),C,R(A),R(B),C



Conflict serializability

* Two schedules are equivalent if they:
— contain same operations

— order conflicting operations the same way

Two ops conflict if they access the

same data item and one is a write.

* A schedule is serializable if it's equivalent to
some serial schedule

o Strict serializability / Order-preserving
serializability

— If T finishes before T’ starts, T must be ordered
before T’ in equivalent serial schedule



Serializability Example

T1 T2

X = Read(A) X = Read(A)
y = Read(B) y= Read(B)
Write(A, x-100) Print(x+y)
Write(B, y+100)

Serializable? R(A),R(B),R(A),R(B), C W(A),W(B), C
Equivalent serial schedule: R(A),R(B), C R(A),R(B),W(A),W(B), C

R(A )=> W(A)

Q ..




Examples

T1

X = Read(A) X = Read(A)
y = Read(B) y= Read(B)
Write(A, x-100) Print(x+y)
Write(B, y+100)

Serializable? R(A),R(B), W(A), R(A) R(B), C W(B) C

A) - R(A)

o ..




Examples

T1 T2
X = Read(A)

x = Read(A
y = Read(B) y= Read((C))
Write(A, x-100) Print(x+y)
Write(B, y+100)

Serializable?
R(A),R(B), W(A), R(A) R(C), C R(B) W(B),C W(C) C

T3

W(A) > R(A) R(C) = W(C)

R(B)=> W(B) /a




Realize a serializable schedule

* Locking-based approach

o Strawman solution 1:

— Grab global lock before transaction starts
— Release global lock after transaction commits

o Strawman solution 2:

— Grab short-term fine-grained locks on an item
before access

— Lock(A) Read(A), Unlock(A), Lock(B) Write(B),
Unlock(B) ....



Strawman 2’s problem

T1 T2

X = Read(A) X = Read(A)
y ='Read(B) y= Read(B)
Write(A, x-100) Print(x+y)
Write(B, y+100)

Possible? (short-term, fine-grained locks on reads/writes)
R(A),R(B), W(A), R(A),R(B) CW(B) C

till end of transaction

[ Locks on writes should be held Read an uncommitted value }




More Strawmans

« Strawman 3
— fine-grained locks

— long-term locks for writes

 grab lock before write, release lock after tx
commits/aborts

— short-term locks for reads



Strawman 3’s problem

T1 12

X = Read(A) X = Read(A)
y = Read(B) y= Read(B)
Write(A, x-100) Print(x+y)
Write(B, y+100)

Possible? long-term locks for writes, short-term locks for reads
R(A).R(B), W(A), R(A),R(B), C W(B),C

Read locks must be held }

till commit time Non-repeatable reads }

, R(A),R(B), W(A), W(B),C R(B)



Realize a serializable schedule

» 2 phase locking (2PL)

— A growing phase in which the transaction is
acquiring locks

— A shrinking phase in which locks are released
 |n practice,

— The growing phase is the entire transaction

— The shrinking phase is at the commit time
* Optimization:

— Use read/write locks instead of exclusive locks



2PL In practice: an example

RLock(A)

X = Read(A)

RLock(B) RLock(A)

y = Read(B) x = Read(A)
WLock(A) RLock(B)
buffer A€x-100 y = Read(B)
WLock(B) Print(x+y)
buffer B&y+100 Unlock(A)
T1 issues commit : Unlock(B)
log (A<-0, B&200)

Write(A, 0)

Unlock(A)

Write(B, 200)

Unlock(B)

Commit returns




More on 2PL

« What if a lock is unavailable? wait
* Deadlocks possible?

* How to cope with deadlock? detect & abort
— Grab locks in order? No always possible

— Transaction manager detects deadlock cycles
and aborts affected transactions

— Alternative: timeout and abort yourself



How to support distributed
transactions?

e Storage is sharded across multiple machines
— Different machines store different subset of data

* Challenge: machine failures



Client transaction

A :=A-100
B :=B+100

client
T1

gjonn

transaction

coordinator

%’

A=A-100

—

Node-A

B=B+100

Node-B

P
|

v

A

4 A

« What can go wrong?
— A does not have enough money
— Node B has crashed
— Coordinator crashes
— Some other client is reading or writing to A or B




Reasoning about correctness

* TC, A, B each has a notion of committing

 Correctness:
— If one commits, no one aborts
— If one aborts, no one commits

 Performance:

— If no failures, A and B can commit, then
commit

— If failures happen, find out outcome soon



Correctness first

client

%’

transaction
coordinator

prepare

Node-A

| resut —

I
—

M
]

v A

4

outcome

- ——outcome

N
==

Node-B
|

WLock item A; read A

 if A-100 <0
| * log "I:1=”no
* vote”’no
— * Else:

Log T1="yes” and A-100
vote “yes”

|

If ra==yes && rs==yes

1 o, 7
outcome = commit

else
outcome = “abort”

, ]

Commits upon
receiving “commit”,
unlock A



Performance Issues

* What about timeouts?
— TC times out waiting for A" s response

— A times out waiting for TC’ s outcome
message

* \What about reboots?
— How does a participant clean up?



Handling timeout on A/B

« TC times out waiting for A (or B)' s “yes/
no” response

« Can TC to unilaterally decide to commit?
—NO

« Can TC unilaterally decide to abort?
— depends. In traditional 2PC, yes.



Handling timeout on TC

* If A or B responded with “no” ...
— Can either unilaterally abort??

* |If both A and B responded with “yes”
— Can they unilaterally abort?
— Can it unilaterally commit?



Traditional 2PC is not failure-tolerant

e |f TC can unilaterally abort
— System blocks if TC fails and both A/B voted “yes”.

e |f TC cannot unilaterally abort
— System blocks if either A or B fails



Recovery upon reboot

* TC logs “commit” on disk before replying to
client

* A/B logs “yes” vote on disk before replying
2PC-prepare

* Recovery:

f TC finds no “commit” on disk, abort

f TC finds “commit”, commit

f A/B finds no “yes” on disk, abort

f A/B finds “yes”, asks TC for transaction status



A Case study of 2P commit in real
systems

Sinfonia (SOSP 07)



What problem is Sinfonia addressing?

* Targeted uses

— systems or infrastructural apps within a data
center

* Sinfonia: a shared data service
— Span multiple nodes
— Replicated with consistency guarantees

* Goal: reduce development efforts for system
programmers



Sinfonia architecture

application  application  application  application
node node node node

7 v 4 |

g Iiltj)?aerry &_ Zminitransactionsj Rx_ J/?
o1 T T T - T T T — "
— (IIIII]*~ -—- [T ]*e+ — [T ]*** |
% Qj'—a_ ¢ Jus [f_'l'—q l
memory memory memory !
node node node |
|

. Ismtp architecture.pdf|




Sinfonia mini-transactions

* Provide a restricted form of ACID transactions
— as well as before-after atomicity (using locks)

* Trade off expressiveness for efficiency

— fewer network roundtrips to execute
— Less flexible, general-purpose than traditional transactions



minitransaction

—

Mini-transaction details

[ compare items

mem-id

addr

len

data))

mem-id

len

data ))

read items

addr

mem-id

addr

len

mem-id

len

write items

addr

mem-id

addr

len

data )

mem-id

len

data))

addr

* Mini-transaction
— Check compare items

— If match, retrieve data in
read items, modify data in
write items

 Example (atomic-swap):

t = new Minitransaction()
t->cmp(A, 3000)

t->cmp(B, 2000)

t->write(A, 2000)

t->write(B, 3000)

Status = t->exec_and_commit()



Mini-transaction vs. Traditional
Distributed Transaction

Traditional transactions:
general but expensive

coordinator coordinator

BEGIN tx
actionl > x = Read(A)
PR, y = Read(B)
Write(A, y)
. Write(B, x)
action2 | —  END
pEl—
Prepa
actions... Mini-transaction: "€ & exel
,Orep less general but efficient >
o BEGIN tx —
—— | If(a==3000&& b==2000) ‘F/CB;?’/?:/
// { %It
Omp,; a=2000 T
—— | b=3000
)
v v v END tX v v
Traditional Mini-

transactions transactions




Sinfonia’ s 2P protocol

* Transaction coordinator is at application
client instead of memory node

— Saves one RTT

* TC cannot unilaterally abort

— Because application clients are less reliable and
they do not keep logs



Sinfonia’ s 2P protocol

e A transaction is committed iff all participants have
“yes” in their logs
* Recovery coordinator cleans up

— Ask all participants for existing vote (or vote “no” if not
voted yet)

— Commit iff all vote “yes”

* Transaction blocks if a memory node crashes
— Must wait for memory node to recovery from disk



Sinfonia’s example usage: SinfoniaFS

| _NFS_ | | _NFS__ | | _NFS__ | | _NFS _ |
CT) E cache: cache: cache: cache:
T L D inode, inode, inode, inode,
=SW= 9D free block, free block, free block, free block,
o v | data data data data
v y A
user - Ly 7 R . e L% 7
a2 W\ / minitransactions //
S ibrary Yy 4Ny
=
[&p )

superblock area

————————— — — — — — — — — — — — — —

inode area

free block
bitmap area

data block
area

(SRR [ [ ——— |

|smtp architecture.pdfl




N

General use of mini-transaction in
SinfoniaFS

If local cache is empty, load it

Make modifications to local cache

Issue a mini-transaction to check the validity of
cache, apply modification

If mini-transaction fails, reload cached item and try
again



Mini-transaction usage example:
append to file

* Find a free block in cached freemap

e |ssue mini-transaction with

— Compare items: cached inode, free status of the
block

— Write items: inode, append new block, freemap,
new block

* If mini-transaction fails, reload cache



Summary:

 ACID transaction

— Recovery relies on WAL logging

— Concurrency control can use 2PL to achieve
serializability

e Distributed transactions use 2PC for commit
— 2PC is not fault tolerant



