
RPC and Threads

Jinyang Li

These slides are based on lecture notes of 6.824

Labs are based on Go language
• Why Golang? (as opposed to the popular

alternative: C++)
– good support for concurrency
– good support for RPC
– garbage-collected (no use-after-free problems)
– good and comprehensive library

• Notable systems built using Go
– Dropbox’s backend infrastructure
– CoachroachDB

Threads
• Thread = “thread of execution”

– allow one program to logically execute many
things at once

– Each thread has its own per-thread state:
• program counter
• registers
• stack

– All threads share memory (occupy same address
space)

Golang refers to threads as goroutines

Threads share address space
Kernel virtual memory

Shared libraries

Runtime heap

User stack

Unused0

0x400000

Read/write segment

Read-only segment

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

Loaded
from
the
executable
file

thread 0 thread 1 thread 2 thread 3

Process 1

Threads have separate stacks
Kernel virtual memory

Shared libraries

Runtime heap

User stack 0

Unused0

0x400000

Read/write segment

Read-only segment

sp0

Memory
invisible to
user code

brk

Loaded
from
the
executable
file

thread 0 thread 1 thread 2 thread 3
Process 1

User stack 1
sp1

User stack 2

User stack 3
sp2

sp3

Each thread has its own stack
- Each thread has its own stack pointer
- Each CPU core has its own register file
- To run thread-i on core-x, store stack

pointer of thread-i in core-x’s %rsp
register

CPU 0
sp0RSP:

CPU 1
sp1RSP:

CPU 2
sp2RSP:

CPU 3
sp3RSP:

Threads have separate control flow
Kernel virtual memory

Shared libraries

Runtime heap

User stack 0

Unused0

0x400000

Read/write segment

Read-only segment

sp0

Memory
invisible to
user code

brk

Loaded
from
the
executable
file

thread 0 thread 1 thread 2 thread 3

Process 1

User stack 1
sp1

User stack 2

User stack 3
sp2

sp3

To run thread-i on core-x, store %rip
(program counter) to point to thread-i’s
current execution point.

CPU 0
addr1PC:

movq …IR:

sp0RSP:

CPU 1
addr2PC:

addq …IR:

sp1RSP:

CPU 2
addr3PC:

mulq …IR:

sp2RSP:

CPU 3
addr4PC:

subq …IR:

sp3RSP:

Why threads and how many?

• Threads are created to exploit concurrency
– I/O concurrency: while waiting for a response from

another machine, process another request
– Multicore: threads run parallel on many CPU cores

• Go encourages one to create many goroutines
– many more than # of cores
– Go runtime schedules threads on available cores

• Goroutines are more efficient than C++ threads
– but still more expensive than function calls

Threading Challenges : races
• Races arise because of shared memory
var x int
for i := 0; i < 2; i++ {

go func() {
x++

}()
}

go run –race main.go

Read x=0 into %rax

Incr %rax to 1

Write %rax=1 to x

Read x=0 into %rax
Incr %rax to 1
Write %rax=1 to x

Threading challenges: races
• Races due to shared memory
var x int
var mu sync.Mutex
for i := 0; i < 2; i++ {

go func() {
mu.Lock()
defer mu.Unlock()
x++

}()
}

go run –race main.go

• defer is executed when
the enclosing function
returns

• Try to always put
mu.Unlock in defer

Threading challenges: coordination
• Mechanism: Go channel

– For passing information between goroutines
– can be unbuffered or have a bounded-size buffer
– Several threads can send/receive on same channel

• Go runtime uses locks internally
– Sending is blocked

• when buffered channel is full
• when no thread is ready to receive from unbuffered channel

– Receiving is blocked
• when channel is empty

– Channel is closed to indicate the end
• receiving from a closed channel returns error

Threading challenges: coordination
• Mechanism: Waitgroup

– Used for waiting for a collection of threads to finish
– Supports 3 methods:

• Add(int x): add x (threads) to the collection
• Done(): called when one thread has finished
• Wait: blocks until all threads in the collection has finished

Channels and Waitgroups
func main() {

workChan := make(chan int) //unbuffered channel
for i := 1; i <= 20; i++ {

workChan <- i
}

for i := 0; i < 5; i++ {
go func() {

for {
n :=<- workChan
f := computeFactorial(n)
fmt.Printf(“n=%d, f=%d\n”, n, f)

}
}()

}

deadlock!
Main thread blocks here because
no goroutine is ready to receive

from channel

workChan := make(chan int, 20) //buffer size 20
for i := 1; i <= 20; i++ {

workChan <- i
}

workChan := make(chan int) //unbuffered channel
go func() {

for i := 1; i <= 20; i++ {
workChan <- i

}
}()

Channels and WaitGroups
func main() {

workChan := make(chan int, 20) //buffer size 20
for i := 1; i <= 20; i++ {

workChan <- i
}

var wg sync.WaitGroup
for i := 0; i < 5; i++ {

wg.Add(1)
go func() {

defer wg.Done()
for {

n :=<- workChan

f := computeFactorial(n)
fmt.Printf(“n=%d, f=%d\n”, n, f)

}
}()
wg.Wait()

}

Channels and WaitGroups
func main() {

workChan := make(chan int, 20) //buffer size 20
for i := 1; i <= 20; i++ {

workChan <- i
}
close(workChan)
var wg sync.WaitGroup
for i := 0; i < 5; i++ {

wg.Add(1)
go func() {

defer wg.Done()
for {

n, ok :=<- workChan
if !ok { //alternative: for n:= range workChan

break
}
f := computeFactorial(n)
fmt.Printf(“n=%d, f=%d\n”, n, f)

}
}()
wg.Wait()

}

RPC
• A key piece of infrastructure when building DS
• RPC’s goals:

– easier to program than raw sockets
– hide details of client/server communication

• Ideal RPC interface
Client:

z = fn(x, y)

Server:

fn(x, y) {
...
return z

}

Example: KV service (Server-side)
import “net/rpc”
type PutArgs struct {

Key string
Value string

}
type PutReply struct {

Err Err
}
type KV struct {

mu sync.Mutex
keyvalue map[string]string

}
func (kv *KV) Put(args *PutArgs, reply *PutReply) error {

kv.mu.Lock()
defer kv.mu.Unlock()
kv.keyvalue[args.Key] = args.Value
reply.Err = OK
return nil

}

• RPC handlers have a certain
signature (two arguments, second
being a pointer, return type error)

• RPC handlers must be exported
(First letter capitalized)

func (kv *KV) get(key string) string {
...

}

Example: starting RPC server
func startServer() {

rpcs := rpc.NewServer()
kv := KV{keyvalue: make(map[string]string)}
rpcs.Register(&kv)
l, e := net.Listen(“tcp”, “:8888”)
go func() {

for {
conn, err := l.Accept()
if err == nil {

go rpcs.ServeConn(conn)
} else {

break
}

}
l.close()

}()
}

Server handles
each connection
and request in a
separate thread

Example: client-side
type KVClient struct {

clt *rpc.Client
}

func NewKVClient() *KVClient {
clt, err := rpc.Dial(“tcp”, “:8888”)
return &KVClient{clt: clt}

}

func (c *KVClient) Put(key string, value string) {
args := &PutArgs{Key: key, Value: val}
reply := PutReply{}
err := c.clt.call(“KV.Put”, args, &reply)

}

Example: putting it together
func main() {

startServer()
client := NewKVClient()
client.Put(“nyu”, “New York University”)
client.Put(“cmu”, “Carnegie Mellon University”)
fmt.Printf(“Get value=%s\n”, client.Get(“nyu”))

}

RPC software structure

Client
application
Stubs
RPC library
Network

Server RPC
handlers
dispatcher
RPC library
Network

RPC request

construct RPC request
- marshaled args
- RPC handler id
send request, wait for reply

Identify RPC handlers to call
Unmarshall args
Invoke RPC handler w/ args
Marshall reply
Send RPC response back

RPC response

Details of RPC library
• Which server function to call?

– In Go RPC, it’s specified in Call(“KV.Put”, ...)

• Marshalling: format data structure into byte stream
– Go RPC forbids channels, functions, object references in

RPC args/reply

• Binding: how does client know which server to talk
to?
– Go RPC: client supplies server host name
– (rpcbind) A name service maps service names to some

server host

RPC challenge

• What to do about failures?
– lost packets, broken network, slow server, crashed

server

• What does a failure look like to the client RPC
library?
– Client does not see a response from the server
– Client cannot distinguish between the 2 scenarios:

• Server has never seen/processed request
• Server has processed request, but reply is lost

RPC behavior under failure:
at-least-once?

• A simple scheme to handle failure
– RPC library waits for response for a while
– If none arrives, re-send the request (re-establish

network connection if necessary)
– Repeat several times
– If still no response, return an error to application

client.

Perils of at-least-once semantics

• What’s the expected value stored under “k” if
err1==nil and err2== nil?

• Could it be otherwise?

err1 := clt.Call(“KV.Put”, &PutArgs{“k”, 10}, ...)
err2 := clt.Call(“KV.Put”, &PutArgs{“k”, 20}, ...)

Perils of at-least-once semantics

client serverPut k=10

Put k=20

Put k=10, reply=OK

Put k=20, reply=OK
K=10

overwrites
k=20

tim
e

Put k=10

Perils of at-least-once

• Is at-least-once semantics ever okay?
– If it’s ok to repeat operations, e.g. read-only

operations
– If application has its own plan for coping with

duplicates

At-most-once RPC semantics

• Idea:
– RPC library detects duplicate requests, returns

previous reply instead of re-running handler

• Client uses unique ID (xid) with each request,
(use same xid to re-send)

• Server:
if oldreply, ok := seen[xid]; ok {

reply = oldreply
} else {

reply = handler()
seen[xid] = reply

}

Complexities in realizing at-most-once

• How to ensure XID is unique?
– random numbers (must be big)
– unique client-id + sequence #

• How to eventually discard old RPC replies?
– Possible solution-1:

• xid = unique client-id + sequent #
• clients include x in request, indicating “seen all replies <= x”
• server discards replies <= x

– Possible solution-2:
• client agrees to retry for < 5 minutes
• server discards after 5+ minutes

Complexities in realizing at-most-once
• How to handle duplicate request when original is in the

middle of execution?
– Server does not know the reply yet
– Solution: “pending” flag per executing RPC; wait or ignore

• What if an at-most-once server crashes and restarts?
– If server state is in-memory, server will forget.
– How does server distinguish between crash-n-forget vs.

never-before-seen?
– Possible solution:

• server uses a unique number (called “nonce” or “generation-
number”) upon each startup,

• client obtains server’s nonce upon connection, and includes it in
every RPC request.

• server rejects all requests with an old nonce

At-most-once semantics

err = clt.Call(...)

2 possible scenarios:
• if err == nil
• if err != nil

1. Handler is executed exactly once
2. Handler is executed >=1 times
3. Handler is not executed

Go RPC semantics

• Go RPC is “at-most-once”
– Client opens TCP connection
– writes request to TCP connection
– TCP may retransmit, but server’s TCP filters out

duplicates
– No retry in Go RPC library (e.g. will NOT create

another TCP connection if original one fails)
– Go RPC returns error if it does not get a reply

• after a TCP connection error

What about “exactly-once”?

• Can RPC implement “exactly-once”? Should it?
• If a RPC call returns error, how should the

application client respond?
– Re-transmit to the same server?
– Re-transmit to a different server replica?
– Applications need solutions to avoid duplicates

• Lab 3 will handle this in the context of a fault-
tolerant key-value service
– capable of handling unbounded client retransmits

