
Raft: Consistent Log Replication

Jinyang Li
Raft slides are from Ongaro and

Ousterhout’s raft user study

What we’ve learnt last time

• Single-decree Paxos
– 2f+1 nodes agree on a single value
– resilient against f crashes.

• MultiPaxos
– 2f+1 nodes agree on a sequence of values

Recap: Single-decree Paxos

• Paxos invariant (safety property):
– each proposal has a globally unique number
– if a proposal p with value v is committed, then all proposal

p’ > p has value v
• 2-phase

– Prepare (phase-1): find a safe value to use for proposal p
• In accepting Prepare(p), a node

– returns highest previously accepted proposal
– promise not to accept any proposal < p in the future

• Among a majority of OK replies, safe value is:
– the accepted valued with the highest proposal number

– Accept (phase-2): make a majority accept proposal p w/
value v

• If a majority accepts, then p with v is committed

Recap: Single-decree Paxos

time

s1

s2

s3

s4

s5

P 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

A 3.1 X

A 4.5 X

A 4.5 X

A 4.5 X

“s3 okays Prepare proposal 3.1 (from
s1)”

X

Y

input
values

P 4.5

P 4.5

P 4.5

Recap: MultiPaxos

time

s1

s2

s3

s4

s5

i=0 A 3.1 X

i=0 A 3.1 X

i=1 A 3.1 Y

i=1 A 3.1 Y

i=1 A 3.1 Y

x
y

i=1 A 4.5 Yi=0 A 4.5 Noop

i=0 A 4.5 Noop

i=0 A 4.5 Noop

i=1 A 4.5 Y

i=1 A 4.5 Y

i=[0, ∞] P 3.1

i=[0, ∞] P 3.1

i=[0, ∞] P 3.1 i=[0, ∞] P 4.5

i=[0, ∞] P 4.5

i=[0, ∞] P 4.5

• Runs many single-decree Paxos instances
– i-th instance commits value at i-th position in the sequence

In PrepareOK reply:
• i=0, accepted=nil
• i=1, accepted=[Y, 3.1]
• i=[2, ∞], accepted=nil

Today: Raft replicated log

• Paxos’ approach (bottom-up)
– solve single-decree consensus first
– replicate a sequence of values using single-decree

consensus

• Raft’s approach (top-down)
– directly solve log replication without first solving

single-decree consensus

Why learn Raft?

1985
FLP impossibility

1988
Viewstamp
replication

1989
Paxos

2006
[Google]
Chubby lock
service

2012
[Google]
Spanner
database

2010
[Yahoo/Apache]
Zookeeper 2013

Raft

Kubernete/etcd,
RethinkDB,
CockroachDB
YugaByte
TiDB
MongoDB
InfluxDB
…

1. Leader election:
– Select one of the servers to act as leader

2. Normal operation (leader replicates log to
others)

3. Safety and consistency
4. Neutralizing old leaders
5. Client interactions

– Implementing linearizeable semantics
6. Configuration changes:

– Adding and removing servers

Raft Overview

• At any given time, each server is either:
– Leader: handles all client interactions, log replication

• At most 1 viable leader at a time

– Follower: passive (only responds to incoming RPCs)
– Candidate: used to elect a new leader

• Normal operation: 1 leader, others are followers

March 3, 2013

Overview: Raft Server States

Follower Candidate Leader

start
timeout,
start election

receive votes from
majority of servers

timeout,
new election

discover server with
higher termdiscover current server

or higher term

“step
down”

• Time divided into terms:
– Each term starts with an election
– Ends with one leader or no leader

• Each leader is uniquely associated with a term
• Each server maintains current term value
• Key role of terms: identify obsolete information

Terms
Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

• Increment currentTerm, vote for self
• Reset election timeout
• Send RequestVote RPCs to all other servers, wait for either:

• Votes received from majority of servers: become leader
• AppendEntries RPC received from new leader: step

down
• Election timeout elapses without election resolution:

increment term, start new election
• Discover higher term: step down

Candidates

Each server persists the following to stable storage
synchronously before responding to RPCs:
currentTerm latest term server has seen (initialized to 0

on first boot)
votedFor candidateId that received vote in current

term (or null if none)
log[] log entries

Persistent State

term term when entry was received by leader
index position of entry in the log
command command for state machine

Log Entry

Invoked by candidates to gather votes.

Arguments:
candidateId candidate requesting vote
term candidate's term
lastLogIndex index of candidate's last log entry
lastLogTerm term of candidate's last log entry

Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote

Implementation:
1. If term > currentTerm, currentTerm ← term

(step down if leader or candidate)
2. If term == currentTerm, votedFor is null or candidateId,

and candidate's log is at least as complete as local log,
grant vote and reset election timeout

RequestVote RPC

Invoked by leader to replicate log entries and discover
inconsistencies; also used as heartbeat .

Arguments:
term leader's term
leaderId so follower can redirect clients
prevLogIndex index of log entry immediately preceding

new ones
prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat)
commitIndex last entry known to be committed

Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching

prevLogIndex and prevLogTerm

Implementation:
1. Return if term < currentTerm
2. If term > currentTerm, currentTerm ← term
3. If candidate or leader, step down
4. Reset election timeout
5. Return failure if log doesn’t contain an entry at

prevLogIndex whose term matches prevLogTerm
6. If existing entries conflict with new entries, delete all

existing entries starting with first conflicting entry
7. Append any new entries not already in the log
8. Advance state machine with newly committed entries

AppendEntries RPC

Raft Protocol Summary

• Initialize nextIndex for each to last log index + 1
• Send initial empty AppendEntries RPCs (heartbeat) to each

follower; repeat during idle periods to prevent election
timeouts

• Accept commands from clients, append new entries to local
log

• Whenever last log index ≥ nextIndex for a follower, send
AppendEntries RPC with log entries starting at nextIndex,
update nextIndex if successful

• If AppendEntries fails because of log inconsistency,
decrement nextIndex and retry

• Mark log entries committed if stored on a majority of
servers and at least one entry from current term is stored on
a majority of servers

• Step down if currentTerm changes

Leaders

Passive role: followers

Persistant state

Active role: candidates/leader

• Servers start up as followers
• Followers expect to receive RPCs from leaders

or candidates
• Leaders must send heartbeats (empty

AppendEntries RPCs) to maintain authority
• If electionTimeout elapses with no RPCs:

– Follower assumes leader has crashed
– Follower starts new election
– Timeouts typically 100-500ms

Heartbeats and Timeouts

• Change to candidate state
• Increment current term
• Vote for self
• Send RequestVote RPCs to all other servers, retry

until either:
1. Receive votes from majority of servers:

• Become leader
2. Receive RPC from a valid leader:

• Return to follower state
3. No-one wins election (election timeout elapses):

• Increment term, start new election

Election Basics

• Safety: allow at most one winner per term
– Each server gives out only one vote per term (persist on

disk)
– ⚠ Different candidates may use the same term

• Node keeps a votedFor variable to ensure it only gives vote to one

• Liveness: some candidate must eventually win
– Wait for a randomized amount of qme before each retry
– One server usually qmes out and wins elecqon before

others wake up

Elections, cont’d

Servers

Voted for
candidate A

B can’t also get
majority

• Log entry = index, term, command
• Log stored on stable storage (disk); survives crashes
• Entry committed if known to be stored on majority of servers

– Durable, will eventually be executed by state machines

Log Structure
1
a

1 2 3 4 5 6 7 8
3
e

1
b

1
c

2
d

3
f

3
g

3
h

1
a

3
e

1
b

1
c

2
d

1
a

3
e

1
b

1
c

2
d

3
f

3
g

3
h

1
a

1
b

1
a

3
e

1
b

1
c

2
d

3
f

3
g

leader

log index

followers

commited entries

term

command

• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to followers
• Once new entry committed:

– Leader passes command to its state machine,
returns result to client

– Leader notifies followers of committed entries in
subsequent AppendEntries RPCs

– Followers pass committed commands to their
state machines for execution

Normal Operation

Raft tries to achieve the following properties for its logs:
1. If log entries on different servers have same index and term:

– They store the same command
– The logs are identical in all preceding entries

1. If a given entry is committed, all preceding entries are also
committed

Log Consistency

1
a

1 2 3 4 5 6
3
e

1
b

1
c

2
d

3
f

4
g

1
a

3
e

1
b

1
c

2
d

• AppendEntries RPC contains <index, term> of the
entry e that precedes the new one(s)

• Follower must contain the matching entry e;
– otherwise it rejects request

• This check ensures log consistency

AppendEntries Consistency Check

1 2 3 4 5

1
a

3
e

1
b

1
c

2
d

1
a

1
b

1
c

2
d

leader

follower

AppendEntries succeeds:
matching entry

1
a

3
e

1
b

1
c

2
d

1
a

1
b

1
c

1
f

leader

follower

AppendEntries fails:
mismatch

• New leader’s log is “the truth”
• Make followers’ logs eventually idenqcal to leader’s
• Followers may need to “roll back”

– old leader may have leu entries parqally replicated

Leader Changes

1 2 3 4 5 6 7 8log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

Safety property: no two servers can commit
different commands at the same log index

1. Each term has one elected leader
2. If the leader for term t has committed command

v at index i, then all leaders for term t’ > t has
command v at log index i (and thus will have v
committed at i too)

Safety Requirement

Committed → Present in future leaders’ logs

Restricqons on
commitment

Restrictions on
leader election

New leader must use a safe log

• A safe log is one that’s guaranteed to contain
all previously committed commands

• A safe log can be found among a majority
quorum of logs according to 2 rules:
– Rule #1: It is the log with the unique highest term
– Rule #2: If there are >1 log with the same highest

term, it is the longest log among those.

Safe log

1 21 1 2

1 2 3 4 5

1 1 1

1 21 1

1 21 1 2

1 21 1 2

3

3 3

Only nodes with a safe log can be
elected leader

• Instead of transferring logs to leader, Raft ensures that
only nodes with a safe log can be elected as leader

• Candidates include log info in RequestVote RPCs
(index & term of last log entry)

• Voting server V denies vote if its log is “safer”:
(lastTermV > lastTermC) ||
(lastTermV == lastTermC) && (lastIndexV > lastIndexC)

• Leader will have a safe log among electing majority

The subtle caveat of Raft (Sec 5.4.2)

• A log entry’s term does not change since it’s
first written

• Can Raft considers an entry committed if
majority AppendEntries succeed?

• Case #1/2: Leader decides entry in current term is
committed

• Safe: leader for term 3 must contain entry 4

Commiyng Entry from Current Term

1 2 3 4 5 6

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2

AppendEntries just
succeeded

Can’t be elected as
leader for term 3

Leader for
term 2

• Case #2/2: Leader is trying to finish committing
entry from an earlier term

• Entry 2 not safely committed:
– s5 can be elected as leader for term 5
– If elected, it will overwrite entry 2 on s1, s2, and s3!

Committing Entry from Earlier Term

1 2 3

1

1

1

2

1

1

s1

s2

s3

s4

s5

2

2 AppendEntries just
succeeded

3

4
Leader for
term 4

• Case #2/2: Leader is trying to finish committing
entry from an earlier term

Commiyng Entry from Earlier Term

1

1

1

2

1

1

s1

s2

s3

s4

s5

2

3

s1 1

1

1

2

1

1

2

s5

Leader for
term 3

3

s1 1

1

1

2

1

1

2

s5

2

4

Leader for
term 4

Leader for
term 2

3

s1 1

1

1

2

1

1

2

s5

2

Leader for
term 5

3

3

3

3

• Case #2/2: Leader is trying to finish committing
entry from an earlier term

Committing Entry from Earlier Term

1

1

1

2

1

1

s1

s2

s3

s4

s5

2

3

s1 1

1

1

2

1

1

2

s5 3

s1 1

1

1

2

1

1

2

s5

2

4

Leader for
term 3

Leader for
term 4

Leader for
term 2

3

s1 1

1

1

2

1

1

2

s5

2

4

Leader for
term 4

4

4

• For a leader to consider an
entry as committed:
– Must be stored on a

majority of servers
– At least one new entry

from leader’s term must
also be stored on majority
of servers

• Once entry 4 committed:
– s5 cannot be elected

leader for term 5
– Entries 3 and 4 both safe

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4
Leader for
term 4

4

4

Combination of election rules and commitment rules
makes Raft safe

Synchronizing followers’ log with
leader’s log

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index
leader for
term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

March 3, 2013 Raft Consensus Algorithm

• New leader must make a follower’s log consistent with its own
– Delete extraneous entries
– Fill in missing entries

• Leader keeps nextIndex for each follower:
– Index of next log entry to send to that follower
– Initialized to (1 + leader’s last index)

• When AppendEntries check fails, decrement nextIndex and try again:

Synchronizing Follower Logs

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11 12log index

leader for term 7

1 41 1

1 1 1
followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• When follower overwrites inconsistent entry,
it deletes all subsequent entries:

Repairing Logs, cont’d

1 41 1 4 5 5 6 6 6

1 2 3 4 5 6 7 8 9 10 11log index

leader for term 7

1 1 1follower (before) 2 2 33 3 3 32

nextIndex

1 1 1follower (after) 4

• Deposed leader may not be dead:
– Temporarily disconnected from network
– Other servers elect a new leader
– Old leader reconnects and attempts to commit log entries

• Terms used to detect stale leaders (and candidates)
– Every RPC contains term of sender
– If sender’s term is older, RPC is rejected, sender reverts to

follower and updates its term
– If receiver’s term is older, it reverts to follower, updates its term,

then processes RPC normally
• Election updates terms of majority of servers

– Deposed server cannot commit new log entries

Neutralizing Old Leaders

• Send commands to leader
– If leader unknown, contact any server
– If contacted server not leader, it will redirect to leader

• Leader does not respond until command has
been committed and executed by leader’s state
machine

• If request times out (e.g., leader crash):
– Client reissues command to some other server
– Eventually redirected to new leader
– Retry request with new leader

Client Protocol

• What if leader crashes after executing command, but
before responding?
– Must not execute command twice

• Solution: client embeds a unique id in each command
– Server includes id in log entry
– Before accepting command, leader checks its log for entry

with that id
– If id found in log, ignore new command, return response

from old command
• Result: exactly-once semantics as long as client doesn’t

crash

Client Protocol, cont’d

Recap: Raft

x
y

time

s1

s2

s3

s4

s5

RV t=3 li=0 lt=0

RV t=3, li=0, lt=0

RV t=3, li=0, lt=0

AE t=3 li=1,lt=3, Y

AE t=3 li=1,lt=0, Y

AE t=3 li=1,lt=0, Y

AE t=3 li=0,lt=0, X

AE t=3 li=0,lt=0, X

AE t=3 li=0,lt=0, X

AE t=3 li=0,lt=0, X

RV t=4, li=2,lt=3

RV t=4, li=2,lt=3

RV t=4, li=2,lt=3

AE t=4 li=2,lt=3, nil

AE t=4 li=0,lt=0, X, Y,

AE t=4 li=1,lt=3, Y,

• System configuration:
– <server-id, address> for each server
– Determines what constitutes a majority

• Consensus mechanism must support changes
in the configuration:
– Replace failed machine
– Change degree of replication

Configuration Changes

Cannot switch directly from one configuration to
another: conflicting majorities could arise

Configuration Changes, cont’d

Cold Cnew

Server 1

Server 2

Server 3

Server 4

Server 5

Majority of Cold

Majority of Cnew

time

• Raft uses a 2-phase approach:
– Intermediate phase uses joint consensus (need majority of both

old and new configurations for elections, commitment)
– Configuration change is just a log entry; applied immediately on

receipt (committed or not)
– Once joint consensus is committed, begin replicating log entry

for final configuration

Joint Consensus

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

• Any server from either configuration can serve as leader
• If current leader is not in Cnew, must step down once Cnew is

committed.

Joint Consensus, cont’d

timeCold+new entry
committed

Cnew entry
commited

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

leader not in Cnew
steps down here

Paxos vs. Raft
• Different protocols? or variants of the same thing?

s1

s2

s3

i=0 A 3.1 X i=1 A 3.1 Y

i=1 A 3.1 Y i=0 A 4.5 Noop

i=0 A 4.5 Noop

i=1 A 4.5 Y

i=1 A 4.5 Y

i=[0, ∞] P 3.1

i=[0, ∞] P 3.1

i=[0, ∞] P 3.1

i=[0, ∞] P 4.5

i=[0, ∞] P 4.5

Rau
s1

s2

s3

RV t=3 li=0 lt=0

RV t=3, li=0, lt=0

RV t=3, li=0, lt=0

AE t=3 li=1,lt=3, Y

AE t=3 li=1,lt=3, Y

AE t=3 li=0,lt=0, X

AE t=3 li=0,lt=0, X

RV t=4, li=2,lt=3

RV t=4, li=2,lt=3 AE t=4 li=2,lt=3, nil

AE t=4 li=0,lt=0, X, Y,

MultiPaxos

(Mulq-)Paxos

Each Server’s State:

Proposer identifier

Instances

value1

ballot
1

value2

ballot
2

value3

ballot
3

Ballot
number

Ballot number is another
name for proposal number
<local_counter: server-id>Monotonically

increasing

(Multi-)Paxos

Each Server’s State:

Proposer identifier

Instances

value1

ballot
1

value2

ballot
2

value3

ballot
3

Monotonically
increasing

Workflow

Distinguish
Proposer

Acceptor

Acceptor

Ballot
number

Propose Accept

Phase I Phase II

Raft
Each Server’s State:

Leader identifier

Log

Monotonically
increasing

Term
number

value1

term1

value2

term2

value3

term3

Raft

Workflow

Leader

Follower

Follower
RequestVote AppendEntries

Phase I Phase II

Each Server’s State:

Leader identifier

Log

Monotonically
increasing

Term
number

value1

term1

value2

term2

value3

term3

Intuition – They Are Similar
(equivalent?)

Similar State

Ballot Term

Similar Workflow

Propose RequestVote

Instance Log Entry

Instance.ballot Entry.term

Accept AppendEntries

They are similar, but not equivalent
(in terms of their state transitions)

The Difference – Example I

Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

1

V2

2

V3

3

V1

1

V2

2

Paxos

The Difference – Example I

Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V3

3

V1

1

V2

2

Paxos

The Difference – Example I

Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V3

3

V1

3

V2

3

V3

3

Paxos

The Difference – Example I

Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V3

3

V1

3

V2

3

V3

3

Paxos

Leader

Follower

Term Log

3

3

V1

1
V2

2
V3

3

V1

1

V2

2

Raft

The Difference – Example I

Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V3

3

V1

3

V2

3

V3

3

Paxos

Leader

Follower

Term Log

3

3

V1

1
V2

2
V3

3

V1

1
V2

2
V3

3

Raft

The Difference – Example I
Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V3

3

V1

3

V2

3

V3

3

Ballot of uncommitted instances
will be updated in accept phase

Paxos

Leader

Follower

Term Log

3

3

V1

1
V2

2
V3

3

V1

1
V2

2
V3

3

Raft

Term of uncommitted entries
never change in append phase

The Difference – Example II
Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

1

V2

3

V1

1
V’2
2

V’3

2

Paxos

The Difference – Example II
Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V1

3

V2

3

V’3

2

Paxos

The Difference – Example II
Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V1

3

V2

3

V’3

2

Paxos

Term Log

3

3

V1

1

V2

3

V1

1
V’2

2

V’3

2

Raft

Leader

Follower

The Difference – Example II
Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V1

3

V2

3
V’3

2

Paxos

Term Log

3

3

V1

1

V2

3

V1

1
V2

3

Raft

Leader

Follower

The Difference – Example II
Distinguish
Proposer

Acceptor

Ballot Instances

3

3

V1

3

V2

3

V1

3

V2

3
V’3
2

Paxos

Term Log

3

3

V1

1

V2

3

V1

1
V2

3

Raft

Leader

Follower

Paxos does not delete accepted
instance

Raft deletes appended entries on
demand.

The Differences
Accepted Instance ≠ Appended Log Entry

Accept ballot can be updated Append term is read only

Acceptor cannot delete accepted
instances

Follower can delete its log
entries

Paxos commit point:
Proposal has been accepted
by a majority

Raft commit point:
Entry has been appended
at majority && a later entry with
currentTerm has been appended
at majority

