Primary-backup replication

Jinyang Li

Some slides adapted from 6.824 notes

Fault tolerance via replication

 To tolerate machine failure, one must
replicate data on >1 servers.

e Particularly important at scale.
— Suppose a typical server crashes every month

— How often some server crashes in a 10,000-server
cluster?

* 30*%24*60/10000 = 4.3 minutes

Consistency: Correctness of replication

* How to replicate data “correctly”?
e Some informal notion of correctness:

— copies of the same data should (eventually) be the
same

— replicated system should “behave similarly” to its
un-replicated system

— (we’ll discuss formal correctness notion in Lec 3)

Challenges in achieving correctness

1. Concurrency
2. Machine failure
3. Network failure (e.g. network partition)

e Particularly tricky because
— one might mistake “slowness” for “failure”
— one cannot tell 2 from 3.

Replication: a strawman

/ \

(e |

server-1

server-2

client-1 startop Put(x,100) endop

client-2 Put(x,200)

Strawman fails under concurrency

/ \ x=200 x=100

(e nnmnn)

x=100 x=200

“Put(x,100)

Put(x,200)

Order updates via primary

* To keep replica in sync, writes must be done
in the same order

* |dea: use a designated server (primary) to

determine the order of updates, others follow
order

Primary determines order of updates

x=200

Challenges in handling failure

 What if a backup timed out in acknowledging
the replication?
— Primary re-tries (works only if backup failure is
transient)

— lgnore the fact that a backup might not have
processed the op.
* How many is it safe to ignore?
* How to make a backup catch up?

Challenges in handling failure

 What if the primary fails? Switch to another
primary?
— Could there be accidentally two “valid” primaries?

— |If an op is done before the switch, how to ensure
it’s not “lost” after the switch?

* What to re-integrate a recovered server?

Failure handling:
the stone age

* For along time, people do it manually (with
no guaranteed correctness)

— One primary, one backup. Primary ignores
temporary replication failure of a backup.

— If primary crashes, human operator re-configures
the system to use the former backup as new
primary

— some ops done by primary might be “lost” at new
primary

Viewstamp replication

* Original paper Oki and Liskov, 1988
* Viewstamp revisited: Liskov and Cowling, 2012

* Alandmark work: The first (together with
Paxos) to handle failure correctly.

t.

3 BARBARA LISKO\/

ONIANL

Devealo ad | vhon prncpie

/1# &

800¢
7
-~
Pg 9.
|yt

VR overview: state machine replication

e Servers replicate a log of operations (instead of
directly modifying state in-place)

— Efficient for: comparing state among servers, sync-ing
out-of-date servers

— General: A log of operations may be

* [key=x, data="..."”] [key=x, data="..."] ...

* [create /jinyang/x] [mv /jinyang/x, /jinyang/y]....

e [update T set grade=10 where uid=123] [insert into T
values ...] ...

* Correctness€<—2 servers execute the same

sequence of log
— Operations must be deterministic

VR overview: primary-backup

* VR assumes a static configuration of servers,
e.g. SO, S1, S2

* To handle primary failure, VR moves through a
sequence of “views”
-0,1,2,3,...

— Deterministic mapping from view-number to
primary: primary = view-number % total_servers

—e.g., 0250, 1251, 2->S2, 3-S50, ...

VR correctness conditions

* Anopis “committed” if it is replicated by a
threshold number of servers

— Once committed, an op’s position in log is fixed

 Correctness—>

— No two different ops are committed at the same
log position

Key mechanism for correctness:
guorum intersection

* Primary waits for quorum = majority servers (including
self) before considering an op committed

* If backup is slow (or temporarily crashed), the primary
can still commit as usual.

e Can two primaries commit different ops at same
position?

Key mechanism for correctness:
guorum intersection

SO: primary of vO,
committed opO at
pos=10 on SO, S2,
S3

S1: primary of v1,
committed op1 at
pos=10 on S1, S3, S4

Key mechanism for correctness:
guorum intersection

* Correctness condition: all committed ops in
view v-1 must be known to primary in view v.

e How?

— View v is only active after v’s primary has learned
the log state of majority of nodes (at earlier views)

S1

0 53
52

< S1’s view-change quorum

op’s replication quorum

Basic VR protocol

* Server state:
— currentViewNumber
— lastNormalViewNumber
— status (NORMAL, VIEW-CHANGE, or RECOVERING)
— op-number
— commit-number

— log

VR normal case processing

/g
/ \ 5/ . >

(IIEII -~
I
<
52 3 On receiving Prepare m, server \
§ must:
& © ok ° rejectifits currentView > m.v
@) . . er -
/ \ N * rejectif its status = NORMAL
(e} S .
51 Y e append cmd to log at position
&)) op-number (must process
Q ' .)
@ y . according to op-number order
Qf OK‘ v \ g p)/
/ \ : .
(IIIEI LOK. .y N
SO (primary) . 7 >
\ OK Primary considers a
ﬂ cmd cmd committed after
getting majority OKs

j _ o

VR normal case processing

 What's the latency of committing a command?
— from the primary’s perspective
— from the client’s perspective

* How does a backup learn a command’s commit

status?

— Primary piggybacks “commit-number” in its Prepare
msg.

View-change: when the primary fails

(e mimj

S2

/ \

(e)
S1

SO (g ‘mary)

OK
OK ..y

S

On receiving ViewChange m, server

does:

* rejectif its currentView > m.v

* set currentView=m.v, status=
VIEW-CHANGE

* returnits log and the latest

K normal view. /

View-change to vl
succeeds if majority
replied OK.

S1 decides on the
newlLog for vl

/

>

View-change: what log for new view?

* Rule 1: Pick the log w/ biggest latestNormalView

lastNormal=1

S2 A B (2. vl becomes
o1 active;primary S1
A B replicates B :
Z_~ which log should v2 have?

lastNormal=0

1. Network
partitions S1,
S2 from SO

3. Primary SO
replicates C,D at

itself

4. Network heals.
S1 crashes

View-change: what log for new view?

 Rule 2:if >1 logs exist in rule-1, pick the longest one

2+S1 tries to view-
S1 A B — change for vi

1. Primary SO crashes
afte replicating C to
SO and S2.

Other details

 Arecovered server might be out of sync with
primary.
— To recover, it transfers primary’s log

* How to transfer logs efficiently?

— checkpointing etc.

