

Some slides are adapted from those of Jeff Dean and Matei Zaharia

What have we learnt so far?

- Distributed storage systems
 - consistency semantics
 - protocols for fault tolerance
 - Paxos, Raft, Viewstamp
- Transactional Online processing

 distributed transactions
- Today: Offline batch processing

Why distributed computations?

- How long to sort 1 TB on one computer?
 - One computer can read ~50MB from disk
 - Takes 5.5 hours!
- Google indexes 60 trillion web pages
 60 * 10^12 pages * 10KB/page = 600 PB
- Large Hadron Collider is expected to produce 15 PB every year!

Solution: use many nodes!

- Data Centers at Amazon/Facebook/Google
 - Hundreds of thousands of PCs connected by high speed LANs
- Cloud computing
 - Any programmer can rent nodes in Data Centers for cheap
- The promise:
 - − 1000 nodes → 1000X speedup

Distributed computations are difficult to program

- Sending data to/from nodes
- Coordinating among nodes
- Recovering from node failure
- Optimizing for locality
- Debugging

Same for all problems

The world before MapReduce comes along

- Dominant philosophy in systems research
 - programming many machines should be "the same" that of a single multi-core machine
 - distributed shared memory
 - automatic parallelization of existing programs
- MPI for high performance computing
 - a collection of communication/synchronization primitives to simplify message passing
- No systems handle failures

MapReduce

- A programming model for large-scale computations
 - Process large amounts of input, produce output
 - No side-effects or persistent state (unlike file system)
- MapReduce is implemented as a runtime library:
 - automatic parallelization
 - load balancing
 - locality optimization
 - handling of machine failures

MapReduce design

- Input data is partitioned into M splits
- Map: extract information on each split
 - Each Map produces R partitions
- Shuffle and sort
 - Bring M partitions to the same reducer
- Reduce: aggregate, summarize, filter or transform
- Output is in R result files

More specifically...

- Programmer specifies two methods:
 - map(k, v) \rightarrow <k', v'>*
 - reduce(k', $\langle v' \rangle^*$) $\rightarrow \langle k', v' \rangle^*$
- All v' with same k' are reduced together
- Usually also specify:
 - partition(k', total partitions) -> partition for k'
 - often a simple hash of the key
 - allows reduce operations for different k' to be parallelized

Example: Count word frequencies in web pages

"to", "1"

- Input is files with one doc per record
- Map parses documents into words
 - key = document URL
 - value = document contents
- Output of map:

Example: word frequencies

Reduce: computes sum for a key

Output of reduce saved

Example: Pseudo-code

Map(String input_key, String input_value):
 //input_key: document name
 //input_value: document contents
 for each word w in input_values:
 EmitIntermediate(w, "1");

Reduce(String key, Iterator intermediate_values):

//key: a word, same for input and output //intermediate_values: a list of counts int result = 0; for each v in intermediate_values: result += ParseInt(v); Emit(AsString(result));

MapReduce is widely applicable

- Distributed grep
- Document clustering
- Web link graph reversal
- Detecting duplicate web pages
- •

MapReduce implementation

- Input data is partitioned into M splits
- Map: extract information on each split
 - Each Map produces R partitions
- Shuffle and sort
 - Bring M partitions to the same reducer
- Reduce: aggregate, summarize, filter or transform
- Output is in R result files, stored in a replicated, distributed file system (GFS).

MapReduce scheduling

- One master, many workers
 - Input data split into *M* map tasks
 - R reduce tasks
 - Tasks are assigned to workers dynamically

MapReduce scheduling

- Master assigns a map task to a free worker
 - Prefers "close-by" workers when assigning task
 - Worker reads task input (often from local disk!)
 - Worker produces R local files containing intermediate k/v pairs
- Master assigns a reduce task to a free worker
 - Worker reads intermediate k/v pairs from map workers
 - Worker sorts & applies user's *Reduce* op to produce the output

WordCount Internals

- Input data is split into M map jobs
- Each map job generates in R local partitions

WordCount Internals

Shuffle brings same partitions to same reducer

WordCount Internals

Reduce aggregates sorted key values pairs

The importance of partition function

- partition(k', total partitions) -> partition for k' –e.g. hash(k') % R
- What is the partition function for sort?

Load Balance and Pipelining

- Fine granularity tasks: many more map tasks than machines
 - Minimizes time for fault recovery
 - Can pipeline shuffling with map execution

Process	Time>									
User Program	MapReduce()			wait						
Master	Assign tasks to worker machines									
Worker 1		Map 1	Map 3							
Worker 2			Map							
Worker 3			Read 1.1	Read 1.3		Read 1.2		Redu	ice 1	
Worker 4			I	Read 2.1		Read 2.2	Read	d 2.3	Red	ice 2

Fault tolerance

- What are the potential failure cases?
 - Lost packets
 - Temporary network disconnect
 - Servers crash and rebooted
 - Servers fail permanently (disk wipe)

Fault tolerance via re-execution

On master failure:

• Lab3 does not require handing master failure

On worker failure:

- Re-execute in-progress map tasks
- Re-execute in-progress reduce tasks
- Task completion committed through master

Is it possible a task is executed twice?

How to handle stragglers

- Ideal speedup on N Machines?
- Why no ideal speedup in practice?
- Straggler: Slow workers drastically increase completion time
 - Other jobs consuming resources on machine
 - Bad disks with soft errors transfer data very slowly
 - Weird things: processor caches disabled (!!)
 - An unusually large reduce partition
- Solution: Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"

MapReduce Sort Performance

- 1TB (100-byte record) data to be sorted
- 1700 machines
- M=15000 R=4000

MapReduce Sort Performance

Big Data Computation

Spark's motivation

- More Complex Analytics
 - multi-stage processing
 - iterative machine learning
 - iterative graph processing
- Better performance
 - lots of application's dataset can fit in the aggregate memory of many machines

What MapReduce lacks

- Efficient data sharing primitive for multistaging processing
 - output of the previous stage is stored on GFS
 - input of the current stage is read from GFS

Multi-stage MapReduce job

Spark's goal

10-100× faster than network/disk, but how to get FT?

Spark's solution

- Restricted form of distributed shared memory

 Immutable, partitioned collections of records
- Can only be built through coarse-grained deterministic transformations (map, filter, join, ...)
- Efficient fault recovery using lineage
 - Log one operation to apply to many elements
 - Recompute lost partitions on failure

RDD recovery

10-100× faster than network/disk, but how to get FT?

Spark API

• DryadLINQ-like API in Scala language

$map(f: T \Rightarrow U)$:	:	$RDD[T] \Rightarrow RDD[U]$
$filter(f: T \Rightarrow Bool)$:	:	$RDD[T] \Rightarrow RDD[T]$
$flatMap(f: T \Rightarrow Seq[U])$:	:	$RDD[T] \Rightarrow RDD[U]$
sample(fraction : Float) :	:	$RDD[T] \Rightarrow RDD[T]$ (Deterministic sampling)
groupByKey() :	:	$RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]$
$reduceByKey(f:(V,V) \Rightarrow V)$:	:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
union() :	:	$(RDD[T], RDD[T]) \Rightarrow RDD[T]$
join() :	:	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]$
cogroup() :	:	$(RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]$
crossProduct() :	:	$(RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]$
$mapValues(f: V \Rightarrow W)$:	:	$RDD[(K, V)] \Rightarrow RDD[(K, W)]$ (Preserves partitioning)
<pre>sort(c : Comparator[K]) :</pre>	:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
<pre>partitionBy(p:Partitioner[K]) :</pre>	:	$RDD[(K, V)] \Rightarrow RDD[(K, V)]$
count() :]	$RDD[T] \Rightarrow Long$
collect() :]	$RDD[T] \Rightarrow Seq[T]$
$reduce(f:(T,T) \Rightarrow T)$:]	$RDD[T] \Rightarrow T$
lookup(k: K) :	J	$RDD[(K, V)] \Rightarrow Seq[V]$ (On hash/range partitioned RDDs)
save(path:String) :	(Outputs RDD to a storage system, e.g., HDFS

Example: log mining

Load error messages from a log into memory, then interactively search for various patterns

Fault recovery

RDDs track the graph of transformations that built them (their *lineage*) to rebuild lost data

Another example: PageRank

1. Start each page with a rank of 1 2. On each iteration, update each page's rank to $\Sigma_{i \in neighbors}$ rank_i / |neighbors_i|

```
links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {
   ranks = links.join(ranks).flatMap {
     (url, (links, rank)) =>
     links.map(dest => (dest, rank/links.size))
   }.reduceByKey(_ + _)
}
```

Optimizing Placement

1inks & ranks repeatedly joined

Can *co-partition* them (e.g. hash both on URL) to avoid shuffles

Can also use app knowledge, e.g., hash on DNS name

PageRank Optimization

Summary

- MapReduce
 - The interface Map + Reduce let programmers write applications that can be automatically parallelized/distributed
 - Re-execution to handle failure / stragglers
- Spark
 - Enable multi-stage MR jobs to pass data via memory
 - RDD handles fault-tolerance at a coarsegranularity by tracking lineage.