
MapReduce
Spark

Some slides are adapted from those of Jeff Dean and Matei Zaharia

What have we learnt so far?

•  Distributed storage systems
– consistency semantics
– protocols for fault tolerance

•  Paxos, Raft, Viewstamp

•  Transactional Online processing
– distributed transactions

•  Today: Offline batch processing

Why distributed computations?

•  How long to sort 1 TB on one computer?
– One computer can read ~50MB from disk
– Takes 5.5 hours!

•  Google indexes 60 trillion web pages
– 60 * 10^12 pages * 10KB/page = 600 PB

•  Large Hadron Collider is expected to
produce 15 PB every year!

Solution: use many nodes!

•  Data Centers at Amazon/Facebook/Google
–  Hundreds of thousands of PCs connected by high

speed LANs
•  Cloud computing

–  Any programmer can rent nodes in Data Centers for
cheap

•  The promise:
–  1000 nodes è 1000X speedup

Distributed computations are
difficult to program

•  Sending data to/from nodes
•  Coordinating among nodes
•  Recovering from node failure
•  Optimizing for locality
•  Debugging

Same for
all problems

The world before MapReduce
comes along

•  Dominant philosophy in systems research
– programming many machines should be “the

same” that of a single multi-core machine
– distributed shared memory
– automatic parallelization of existing programs

•  MPI for high performance computing
– a collection of communication/synchronization

primitives to simplify message passing
•  No systems handle failures

MapReduce
•  A programming model for large-scale computations

–  Process large amounts of input, produce output
–  No side-effects or persistent state (unlike file system)

•  MapReduce is implemented as a runtime library:
–  automatic parallelization
–  load balancing
–  locality optimization
–  handling of machine failures

MapReduce design

•  Input data is partitioned into M splits
•  Map: extract information on each split

–  Each Map produces R partitions

•  Shuffle and sort
–  Bring M partitions to the same reducer

•  Reduce: aggregate, summarize, filter or transform
•  Output is in R result files

More specifically…
• Programmer specifies two methods:

–  map(k, v) → <k', v'>*
–  reduce(k', <v'>*) → <k', v'>*

• All v' with same k' are reduced together

• Usually also specify:
– partition(k’, total partitions) -> partition for k’

•  often a simple hash of the key
•  allows reduce operations for different k’ to be

parallelized

Example: Count word
frequencies in web pages

•  Input is files with one doc per record
•  Map parses documents into words

– key = document URL
– value = document contents

•  Output of map:

“doc1”, “to be or not to be”

“to”, “1”
“be”, “1”
“or”, “1”
…

Example: word frequencies
•  Reduce: computes sum for a key

•  Output of reduce saved

“be”, “2”
“not”, “1”
“or”, “1”
“to”, “2”

key = “or”
values = “1”

“1”

key = “be”
values = “1”, “1”

“2”

key = “to”
values = “1”, “1”

“2”

key = “not”
values = “1”

“1”

Example: Pseudo-code
 Map(String input_key, String input_value):
 //input_key: document name
 //input_value: document contents
 for each word w in input_values:
 EmitIntermediate(w, "1");

 Reduce(String key, Iterator
intermediate_values):
 //key: a word, same for input and output
 //intermediate_values: a list of counts
 int result = 0;
 for each v in intermediate_values:
 result += ParseInt(v);
 Emit(AsString(result));

MapReduce is widely applicable

•  Distributed grep
•  Document clustering
•  Web link graph reversal
•  Detecting duplicate web pages
•  …

MapReduce implementation

•  Input data is partitioned into M splits
•  Map: extract information on each split

–  Each Map produces R partitions

•  Shuffle and sort
–  Bring M partitions to the same reducer

•  Reduce: aggregate, summarize, filter or transform
•  Output is in R result files, stored in a replicated,

distributed file system (GFS).

MapReduce scheduling
•  One master, many workers

–  Input data split into M map tasks
– R reduce tasks
– Tasks are assigned to workers dynamically

MapReduce scheduling
•  Master assigns a map task to a free worker

–  Prefers “close-by” workers when assigning task
–  Worker reads task input (often from local disk!)
–  Worker produces R local files containing intermediate

k/v pairs

•  Master assigns a reduce task to a free worker
–  Worker reads intermediate k/v pairs from map workers
–  Worker sorts & applies user’s Reduce op to produce

the output

Parallel MapReduce

Map Map Map Map

Input
data

Reduce

Shuffle

Reduce

Shuffle

Reduce

Shuffle

Partitioned
output

Master

WordCount Internals
•  Input data is split into M map jobs
•  Each map job generates in R local partitions

“doc1”,
“to be or not
to be”

“to”, “1”
“be”, “1”
“or”, “1”
“not”, “1
“to”, “1”

“be”,“1”

“not”,“1”
“or”, “1”

R local
partitions

“doc234”,
“do not be silly”

“do”, “1”
“not”, “1”
“be”, “1”
“silly”, “1 “be”,“1”

R local
partitions

“not”,“1”

“do”,“1”

“to”,“1”,”1”
partionFunction

WordCount Internals
•  Shuffle brings same partitions to same reducer

“to”,“1”,”1”

“be”,“1”

“not”,“1”
“or”, “1”

“be”,“1”

R local
partitions

R local
partitions

“not”,“1”

“do”,“1”

“to”,“1”,”1”
“do”,“1”

“be”,“1”,”1”

“not”,“1”,”1”
“or”, “1”

WordCount Internals
•  Reduce aggregates sorted key values pairs

“to”,“1”,”1”
“do”,“1”

“not”,“1”,”1”
“or”, “1”

“do”,“1”
“to”, “2”

“be”,“2”

“not”,“2”
“or”, “1”

“be”,“1”,”1”

The importance of partition
function

•  partition(k’, total partitions) ->
partition for k’
– e.g. hash(k’) % R

•  What is the partition function for sort?

Load Balance and Pipelining
•  Fine granularity tasks: many more map

tasks than machines
– Minimizes time for fault recovery
– Can pipeline shuffling with map execution
– Better dynamic load balancing

•  Often use 200,000 map/5000 reduce tasks
w/ 2000 machines

Fault tolerance
•  What are the potential failure cases?

– Lost packets
– Temporary network disconnect
– Servers crash and rebooted
– Servers fail permanently (disk wipe)

Fault tolerance via re-execution
On master failure:
•  Lab3 does not require handing master failure

On worker failure:
•  Re-execute in-progress map tasks
•  Re-execute in-progress reduce tasks
•  Task completion committed through master

Is it possible a task is executed twice?

How to handle stragglers
•  Ideal speedup on N Machines?
•  Why no ideal speedup in practice?
•  Straggler: Slow workers drastically increase

completion time
–  Other jobs consuming resources on machine
–  Bad disks with soft errors transfer data very slowly
–  Weird things: processor caches disabled (!!)
–  An unusually large reduce partition

•  Solution: Near end of phase, spawn backup
copies of tasks
–  Whichever one finishes first "wins"

•  Effect: Dramatically shortens job completion time

MapReduce Sort Performance

•  1TB (100-byte record) data to be sorted
•  1700 machines
•  M=15000 R=4000

MapReduce Sort Performance

When can shuffle start?

When can reduce start?

Big Data Computation

28

2005 2010 2015

Map
Reduce

GraphXGraphLabPregel

Hadoop

Spark

Hive
Dryad
LINQ

Dremel

Shark

Spark-StreamingStorm Naid

Spark’s motivation

•  More Complex Analytics
– multi-stage processing

•  iterative machine learning
•  iterative graph processing

•  Better performance
–  lots of application’s dataset can fit in the

aggregate memory of many machines

What MapReduce lacks

•  Efficient data sharing primitive for multi-
staging processing
– output of the previous stage is stored on GFS
–  input of the current stage is read from GFS

Multi-stage MapReduce job

Spark’s goal

Spark’s solution
•  Restricted form of distributed shared memory

–  Immutable, partitioned collections of records
•  Can only be built through coarse-grained

deterministic transformations (map, filter,
join, ...)

•  Efficient fault recovery using lineage
– Log one operation to apply to many elements
– Recompute lost partitions on failure

RDD recovery
re-run

Spark API
•  DryadLINQ-like API in Scala language

Example: log mining

Fault recovery

Another example: PageRank

Optimizing Placement

PageRank Optimization

Summary

•  MapReduce
– The interface Map + Reduce let

programmers write applications that can be
automatically parallelized/distributed

– Re-execution to handle failure / stragglers
•  Spark

– Enable multi-stage MR jobs to pass data
via memory

– RDD handles fault-tolerance at a coarse-
granularity by tracking lineage.

