MapReduce
Spark

Some slides are adapted from those of Jeff Dean and Matei Zaharia

What have we learnt so far?

* Distributed storage systems
— consistency semantics

— protocols for fault tolerance
« Paxos, Raft, Viewstamp

* Transactional Online processing
— distributed transactions

* Today: Offline batch processing

Why distributed computations?

 How long to sort 1 TB on one computer?

— One computer can read ~50MB from disk
— Takes 5.5 hours!

* Google indexes 60 trillion web pages
— 60 * 10M2 pages * 10KB/page = 600 PB

» Large Hadron Collider is expected to
produce 15 PB every year!

Solution: use many nodes!

« Data Centers at Amazon/Facebook/Google

— Hundreds of thousands of PCs connected by high
speed LANs

* Cloud computing

— Any programmer can rent nodes in Data Centers for
cheap

* The promise:
— 1000 nodes =» 1000X speedup

Distributed computations are
difficult to program

Sending data to/from nodes
Coordinating among nodes
Recovering from node failure Same for
Optimizing for locality all problems
Debugging

The world before MapReduce
comes along

* Dominant philosophy in systems research

— programming many machines should be “the
same” that of a single multi-core machine

— distributed shared memory
— automatic parallelization of existing programs
* MPI for high performance computing

— a collection of communication/synchronization
primitives to simplify message passing

* No systems handle failures

MapReduce

* A programming model for large-scale computations
— Process large amounts of input, produce output
— No side-effects or persistent state (unlike file system)

 MapReduce is implemented as a runtime library:
— automatic parallelization
— load balancing
— locality optimization
— handling of machine failures

MapReduce design

* Map: extract information on each split

- Reduce: aggregate, summarize, filter or transform

More specifically...

* Programmer specifies two methods:
— map(k, v) — <K', v'>*
— reduce(k’, <v'>*) — <K', v'>*

 All v' with same k' are reduced together

» Usually also specify:
— partition(k’ , total partitions) -> partition for k’
 often a simple hash of the key

« allows reduce operations for different k’ to be
parallelized

Example: Count word

frequencies in web pages
* Input is files with one doc per record

* Map parses documents into words
— key = document URL
— value = document contents

* Qutput of map:

“doc1”, “to be or not to be”

Example: word frequencies

» Reduce: computes sum for a key

key = "be” key = “not” key = “or” key = “to”
values = “1”, “1” values="1" values =“1" values = “17, “1”
“2” “1 ” “1 ” “277

« Qutput of reduce saved

13 be,,, “277
“nOt”, “1 b4
“Or”, “1 7

“tO”, “2”

Example: Pseudo-code

Map (String input key, String input value):
//input key: document name
//input value: document contents
for each word w in input values:
EmitIntermediate(w, "1");

Reduce (String key, Iterator
intermediate values):

//key: a word, same for input and output
//intermediate values: a list of counts

int result = 0;

for each v in intermediate values:
result += ParselInt(v) ;

Emit (AsString(result));

MapReduce is widely applicable

* Distributed grep

* Document clustering

* Web link graph reversal

» Detecting duplicate web pages

MapReduce implementation

Input data is partitioned into M splits

Map: extract information on each split
— Each Map produces R partitions

Shuffle and sort

— Bring M partitions to the same reducer
Reduce: aggregate, summarize, filter or transform

Output is in R result files, stored in a replicated,
distributed file system (GFS).

MapReduce scheduling

* One master, many workers
— Input data split into M map tasks
— R reduce tasks
— Tasks are assigned to workers dynamically

MapReduce scheduling

« Master assigns a map task to a free worker
— Prefers “close-by” workers when assigning task
— Worker reads task input (often from local disk!)
— Worker produces R local files containing intermediate
k/v pairs
« Master assigns a reduce task to a free worker
— Worker reads intermediate k/v pairs from map workers

— Worker sorts & applies user’ s Reduce op to produce
the output

Parallel MapReduce

Input
data

T OO O I

Map || Map || Map || Map
Master
Shuffle Shuffle Shuffle
Reduce Reduce Reduce St eEd
output

WordCount Internals
* Input data is split into M map jobs
 Each map job generates in R local partitions

“dOC1 n,
“to be or not
to be”

“doc234”,

“do not be silly”

‘ ” “

n “1 a(\\O

” “

ot” “1 \

‘t 7 “1

77 11 1 ”
not” ‘é /
“ ” “ " \

13/ “
SI||

o “ n “ 17/ ”177

” “

R local
e artitions
“not”,“1” P
(14 77, “1 144
“do”’“1 144
not™,"1 R local
partitions

“be”’“1 7

WordCount Internals

» Shuffle brings same partitions to same reducer
“tO”,“'I”,”'l” “dO”,“']”

) — “tO”,“']”,”’l”

be”, " R local

“not”,“1” | partitions
“Or”, “177 “be”,“1”,”1”

“do77,“1 77
“not”,“1 ”’”1 7

“ben “1 ’” R |Oca| “or” “1
partitions ’

?”

“not”,“1 ””

WordCount Internals

 Reduce aggregates sorted key values pairs

“d 77 “1”
o ,
11 b A 11 7
“t 77 “1 7 D4 ” o do y 1
O J J I “t 77 “2”
o ,

11 77 44 144 ”1 77 11 77 44 144
be’,"1","'1 . be’, 2

“not”,“1 ”’”1 b4

11 7 13 1 ””
J

“not”,“2”

> W« 1) 44177
)

The importance of partition
function
- partition(k’, total partitions) ->
partition for k’
—e.g. hash(k’) % R
* What is the partition function for sort?

Load Balance and Pipelining

* Fine granularity tasks: many more map
tasks than machines

— Minimizes time for fault recovery
— Can pipeline shuffling with map execution

Process Time >

User Program |MapReduce() .. wait ...

Master Assign tasks to worker machines...

Worker 1 Map | Map 3

Worker 2 Map 2

Worker 3 Reduce |
Worker 4 Reduce 2

Fault tolerance

* What are the potential failure cases?
— Lost packets
— Temporary network disconnect
— Servers crash and rebooted
— Servers fail permanently (disk wipe)

Fault tolerance via re-execution

On master failure:
» Lab3 does not require handing master failure

On worker failure:

* Re-execute in-progress map tasks

* Re-execute in-progress reduce tasks

* Task completion committed through master

Is it possible a task is executed twice?

How to handle stragglers

ldeal speedup on N Machines?

Why no ideal speedup in practice?

Straggler: Slow workers drastically increase
completion time

— Other jobs consuming resources on machine

— Bad disks with soft errors transfer data very slowly
— Weird things: processor caches disabled (!!)

— An unusually large reduce partition

Solution: Near end of phase, spawn backup
copies of tasks

— Whichever one finishes first "wins"

MapReduce Sort Performance

* 1TB (100-byte record) data to be sorted
* 1700 machines
« M=15000 R=4000

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

MapReduce Sort Performance

No backup tasks

20000

10000 H

Done:
1235 s

0

\When can shuffle start?

10000 H

Normal
20000 — Done:
839 s
10000 —
0 | | | | | |
0 200 400 600 8O
20000
10000 — _—
0 | | | | | |
0 200 400 600 80D 100
20000 —
10000 — _—
0 | | | | | |

0 200 400 600 500 10001200

Seconds

VWhen can reduce start?

0+

O 200 400 600 300 10001200

Seconds

200 processes killed

20000

10000 H

b

Done:
886 s

0

20000

10000 H

|
0 20

L
0

| | | | |
400 600 800[1000 1200

0

20000 -

10000 H

IR | | | |

O 200 400 600 300|10001200

I

| | | | |

0 200 400 600 300 10001200

Seconds

Big Data Computation

[Storm [Spark-Streaming [Naid

[Pregel [GraphLab GraphX]

Map) Dryad 1 Spark] [Dremel]
Reduce | Hadoop] LINQ J[Hive] [Shark]
®

2005 2010 2015

28

Spark’s motivation

 More Complex Analytics

— multi-stage processing
* iterative machine learning
* iterative graph processing

» Better performance

— lots of application’s dataset can fit in the
aggregate memory of many machines

What MapReduce lacks

 Efficient data sharing primitive for multi-
staging processing
— output of the previous stage is stored on GFS
— input of the current stage is read from GFS

Multi-stage MapReduce job

HDFS HDFS HDFS HDFS

i read write i read writei

Input

—

result 1

HDFS query1
read

—

query 2 result 2

_

query 3 result 3

Input

Slow due to replication and disk 1/O,
but necessary for fault tolerance

Spark’s goal

ogog

Input

one-time
processing

[10-100x faster than network/disk, but how to get FT?]

Spark’s solution

» Restricted form of distributed shared memory
— Immutable, partitioned collections of records

« Can only be built through coarse-grained
deterministic transformations (map, filter,
join, ...)

 Efficient fault recovery using lineage
— Log one operation to apply to many elements
— Recompute lost partitions on failure

RDD recovery

re-run

Input

one-time
processing

[10-100x faster than network/disk, but how to get FT? J

Spark AP

DryadLINQ -like API in Scala language

)
filter(f : T = Bool)

flatMap(f : T = Seq[U])
sample(fraction : Float)
groupByKey()
reduceByKey(f : (V,V) = V)
union()
Join()
cogroup()
crossProduct()
mapValues(f : V=W)
sort(c : Comparator[K])
partitionBy(p : Partitioner[K])

RDD[T] = RDD|U]

RDDI[T] = RDDIT]
RDDI[T] = RDD|[U]
RDDI[T] = RDDIT] (Deterministic sampling)
RDD[(K, V)] = RDDI[(K, Seq[V])]
RDDI(K, V)] = RDD|(K, V)]
(RDD[T],RDD[T]) => RDDIT]
(RDD[(K, V)],RDDI[(K, W)]) = RDD[(K, (V, W))]
(RDD[(K, V)],RDD[(K, W)]) = RDD[(K, (Seq[V], Seq[W]))]
(RDD[T],RDD[U]) = RDD[(T, U)]
RDDI[(K, V)] = RDDI[(K, W)] (Preserves partitioning)
RDDI(K, V)] = RDD|(K, V)]
RDDI(K, V)] = RDD|(K, V)]

count()

collect()

reduce(f : (T,T) = T)
lookup(k : K)
save(path : String)

RDD[T] = Long

RDD|T] = Seq[T]

RDD[T] =T

RDDI[(K, V)] = Seq[V] (On hash/range partitioned RDDs)
Outputs RDD to a storage system, e.g., HDFS

Example: log mining

Load error messages from a log into memory, then
interactively search for various patterns

Tines = spark.textFile(“hdfs://...") :
errors = lines.filter(_.startswith(“ERROR™))
messages = errors.map(_.split("\t’)(2))
messages.persist()

messages. filter(_.contains(“foo™)).count
messages.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)

Fault recovery

RDDs track the graph of transformations that
built them (their lineage) to rebuild lost data

Eg messages = textFile(...).filter(_.contains(“error™))
.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDD MappedRDD
— -)
— e ra
p— — p—
J J)

Another example: PageRank

1. Start each page with arank of 2
2. On each iteration, update each page’s rank to

2 rank. / [neighbors||

i€neighbors

1inks
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
ranks = links.join(ranks).flatmMap {
(url, (links, rank)) =>
Tinks.map(dest => (dest, rank/links.size))
}.reduceByKey(_ + _)

}

Optimizing Placement

Links | [Ranks,

(url, neivghbors)/, _ (url, rank)

.—‘-§§“““1ljom
~ Contribs,

l reduce
Ranks,

.‘§§‘~‘“;“‘1ljom'
:; Contribs, ;
l reduce

Ranks,

3

1inks & ranks repeatedly joined

Can co-partition them (e.g. hash
both on URL) to avoid shuffles

Can also use app knowledge,
e.g., hash on DNS name

Tinks = Tinks.partitionBy(
new URLPartitioner())

PageRank Optimization

o 200 171

5 o 1 “ Hadoop

© .

_:f- o0 W Basic Spark

a - Spark + Controlled
.g 50 23 Partitioning

-

@)

Summary

 MapReduce

— The interface Map + Reduce let
programmers write applications that can be
automatically parallelized/distributed

— Re-execution to handle failure / stragglers
« Spark

— Enable multi-stage MR jobs to pass data
via memory

— RDD handles fault-tolerance at a coarse-
granularity by tracking lineage.

