
Distributed systems
[Fall 2019]

Jinyang Li

Lec 1: Course Introduction
RPC

Threads

Class staff

• Instructor: Prof. Jinyang Li (me)
– jinyang@cs.nyu.edu

• Teaching Assistants:
– Eric Yu Cao yucao@nyu.edu

Background
• What I assume you already know:

– Familiar with OS & networking
– Substantial programming experience
– Comfortable with concurrency and

threading

Waitlist status

• Many people are wait-listed
– Priorities are given to Ph.D. students

• If you are not going to take the class,
drop early to let others in

Course readings
• Lectures are based on research papers

– Check webpage for schedules
• No textbook
• Useful reference books

– Principles of Computer System Design. (Saltzer and
Kaashoek)

– Distributed Systems (Tanenbaum and Steen)

Check course URLs often:
http://www.news.cs.nyu.edu/~jinyang/fa19-ds

Meeting times & Lecture
structure

• Wed, 5:10-7pm
– With a 10-minute break in the middle

• Lecture will do basic concepts followed
by paper discussion
– Read assigned papers before lecture
– Answer online questions on readings

before lecture

How are you evaluated?
• Participation (paper question answering) 10%
• Labs 50% (3 labs + project, or 5 labs)
• Mid-term 15%
• Final 25%

Using Piazza
• Please post all questions on Piazza
• You can post either anonymously or as

yourself.
• We encourage you to answer others’

questions.
– It counts as your class participation.

• We disabled Piazza private posting
– Directly email staff for grade-related questions

Carnegie Mellon

Lab Policies

• You must work alone on all lab assignments
• Optional project is team-based (2-3 students)
• Hand-ins

– Assignments due at 11:59pm on the due date
– Everybody has 5 grace days, no questions asked

Carnegie Mellon

Integrity and Collaboration Policy

We will enforce the policy strictly.
1.The work that you turn in must be yours
2.You must acknowledge your influences
3.You must not look at, or use, solutions from prior years
or the Web, or seek assistance from the Internet
4.You must take reasonable steps to protect your work

– You must not publish your solutions
5.If there are inexplicable discrepancies between exam
and lab performance, we will over-weight the exam and
interview you.

Discussion & integrity
• You are encouraged to form study groups

and to discuss with others
• What you may discuss:

– understanding of the problem statements in labs
or questions

– Generation sketch of solution
– Suggestions of how to debug

• You may not discuss details of your solution
• Acknowledge your collaborators in your

hand-ins

Carnegie Mellon

Integrity and Collaboration Policy
• Academic integrity is very important.

– Fairness
– If you don’t do the work, you won’t learn anything

Carnegie Mellon

Integrity and Collaboration Policy
• We will enforce this policy strictly and

report violators to the department and
Dean.

• If you cannot complete an assignment,
don’t turn it in: one or two uncompleted
assignments won’t result in F.

Questions?

What are distributed systems?
Multiple
hosts

A local or wide
area network

Machines communicate
to provide some service
for applications

Why distributed systems?
for ease-of-use

• Handle geographic separation
• Provide users (or applications) with location

transparency:
• Examples:

– Web: access information with a few “clicks”
– Network file system: access files on remote

servers as if they are on a local disk, share files
among multiple computers

Why distributed systems?
for availability

• Build a reliable system out of unreliable parts
– Hardware can fail: power outage, disk failures,

memory corruption, network switch failures…
– Software can fail: bugs, mis-configuration,

upgrade …
– How to achieve 0.99999 availability?

• Examples:
– Amazon’s S3 key-value store

Why distributed systems?
for scalable capacity

• Aggregate the resources (CPU, bandwidth,
disk) of many computers

• Examples?
– CPU: MapReduce, Spark, Grid computing
– Bandwidth: Akamai CDN, BitTorrent
– Disk: Google file system, Hadoop File System

Why distributed systems?
for modular functionality

• Only need to build a service to accomplish a
single task well.
– Authentication server
– Backup server.

• Compose multiple simple services to
achieve sophisticated functionality
– A distributed file system: a block service + a

meta-data lookup service

The downside

A distributed system is a system in which
I can’t do my work because some
computer that I’ve never even heard of
has failed.”

-- Leslie Lamport

• Much more complex

Main topics in
distributed systems

Distributed systems

Local
storage NetworkLocal

CPU

Applications
(web search, Facebook, Whatsapp...)

#1 Abstraction & Interface

#1 Abstraction & Interface
• What API to offer applications?
• An example, a storage service’s API:

– File system: mkdir, readdir, write, read
– Database: create tables, select, insert...
– Disk: read block, write block
– Key-value store: put(key, value), get(key)

• Conflicting goals:
– Simple to use
– Flexible (Suitable for many applications)
– Efficient to implement

#2 System architecture

• Where to run the system?
– Data center or wide area?

• How is system functionality spread
across machines?
– Peer-to-peer? Different nodes w/ different

roles?
– A single point of

management/coordination?

#3: Fault Tolerance

• How to keep the system running when
some machine is down?

• Dropbox operates on ~10,000 servers,
how to read files when some are down?

• Replication: store the same data on
multiple servers.

• Does the system still give “correct” data?

#4: Consistency
• Contract with apps/users about meaning of

operations. Difficult due to:
– Failure, multiple copies of data, concurrency

• E.g. how to keep 2 replicas “identical”
– If one is down, it will miss updates
– If net is broken, both might process different

updates

#5 Performance
• Latency & Throughput
• To increase throughput, exploit parallelism

– Many resources exist in multiples
• CPU cores, IO and CPU

– Need ways to divide the load
• To reduce latency,

– Figure out what takes time: queuing, network,
storage, some expensive algorithm, many
serial steps?

More on performance: latency
vs. throughput

• Starbucks coffee shop
To get a cup of coffee:
1. Cashier collects

payment, writes
down order

2. Barista makes
coffee

1 sec to handle
a reqest

10 sec to make
a cup of coffee

More on performance: latency
vs. throughput

• Starbucks coffee shop
What’s the minimal
latency experienced by
customer?

1 sec to handle
a reqest

10 sec to make
a cup of coffee

What’s throughput if
processing is
sequential?

What’s the best
throughput when
processing is
parallelized?

A typical latency-throughput graph

Graph from “There Is More Consensus in
Egalitarian Parliaments”, Moraru et al, SOSP’13

