Case-study of primary-backup
replication

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high ageregate performance to a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect 2 marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design points,

The file system has successfully met our storage needs.

It is widely deployed within Google as the storage platform
for the seneratinn and nracsccing nf data nead he nne aore

Symposium of Operating Systems Principles (SOSP) 2003

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed bv a comparable number of

Goal of GFS

 Many computation stores huge amounts of
data and demands high throughput

— many concurrent readers / writers

* Example: parallel web crawler

GFS high level design

* The API

— File system API: directories, files, open/read/
write/append

— Not POSIX compatible

GFS architectu

A single point of control: I
master is responsible for:

* file and chunk
namespace
e file=>chunks

A chunks—>replica servers /

(file name, chunk index) .

(chunk handle,
chunk locations)

GFS master

File namespace

= /foo/bar

chunk 2ef0

Instructions to chunkserver I \

Chunkserver state

Legend:

Data me

— Control

unk handle, byte range)

GFS chunkserver

GFS chunkserver

unk data

Linux file system

Linux file system

99 -

99 -

GFS master

 GFS master server stores meta-data:
— For a directory, what files are in it

— For a file, the set of chunk servers for each 64 MB
chunk

— For a chunk, the set of replica servers storing it

* master keeps state in memory
— 64 bytes of metadata per each chunk
— master replicates operation log to master replicas

e External monitor performs master switching

Master coordinates replica-group for
each chunk

2 master 1. chunk version++
W
cX‘\)(\
secondary | v
replica A
P Q&
>
Q(\'*\
e‘o
/ S
\Q/Ib VQ
Nl
. NP
primary NN
. /
replica @{\“ ;000
o &
¢~
secondary chunk version helps detect stale replica.
replica B If A crashes, master moves to ver=3
Later when A reports its status to master,

master knows A is out of date

Primary-backup replication in chunk servers

ou_n

filename="“a

4 step 1 offset=100
. o
| Client | Master
) 2
i) 3 . list of chunk-servers
o atd and chunk version
5
§ Secopdary R— |§f<
2 Replica A ¢ g
2 &
T
7 - o
Primary 9
"I Replica - ' %
l € Legend
-}
£
=S
6 L — Control
Secondary =)

ReplicaB t«——

GFS chunk replication

* No logging, chunk servers directly apply writes
in-place
— write(chunk-id, offset=100, “abcdefg”)
* What happens w/ concurrent writes?
— data of different clients may be mingled
— Client-1: write(0, 100-byte-of-data)
— Client-2: write(50, 200-byte-of-data)

GFS atomic appends

* Clients issue append(chunk-id, “bbb”)

* Primary picks offset for append and replicates
data at chosen offset.

 What happens during a chunk server failure?

— client retry

III

Does GFS achieve “ideal” consistency
for atomic append?

e No. A file can have duplicate or holes

backup-A A B
- A B B
backup-B Backup-A failed to process

* No. A “unlucky” client can read stale data
— primary succeeded in appending

Primary A B B Upon client retry, primary

— client read from stale backup

Impact of GFS

* Google’s first distributed system infrastructure
» Simplified design = fast development time

— single master
— allow inconsistency during failure

e Worked well for a decade 2003-2012

— succeeded by Colossus
* No more single master holding all meta-data

GFS vs. Viewstamp replication

* VR-replication for chunk server?

* VR-replication for master meta-data
replication?

