DSM and Graph Computation Frameworks

Jinyang Li

(GraphLab slides from Gonzalez' OSDI talk)

Distributed Computation

Distributed computation in the 90s focus on the distributed shared memory model

Distributed shared memory

Goal:

 Write any distributed computation the way you'd write a single-machine multi-threaded computation

Example: adding two arrays

```
float a[1<<30];
float b[1<<30];
float c[1<<30];
void addChunk(thread_id idx)
     long long start = (1 << 20) * idx;
     for (int i = start; i < start+(1<<20); i++) {
          c[i] = a[i] + b[i];
void
main() {
 //launch 1024 threads, each invoking function addChunk
  launchThreads(1024, addChunk);
```

Distributed shared memory enabled distributed multi-threading

Advantages of the DSM model

- Familiar programming model
 - shared variables, locks.
- General purpose
 - Any type of computation can be supported
 - unlike MapReduce, Spark
 - Language agnostic
- Allow re-use of existing apps and library written for single machine

Supporting DSM: conventional approach

Supporting DSM: conventional approach

```
for (i = start; i<start+(1<<20); i++) {
  c[i] = a[i]+b[i];
}</pre>
```


Supporting DSM: conventional approach

rw

DSM challenges

- Memory consistency model
 - What should a read observe?
- Performance
 - Is it fast? Is it scalable?

Memory consistency affects program correctness

```
x = 1
if y == 0 {
    print "yes"
}
```



```
y = 1
if x == 0 {
    print "yes"
}
```


- Will both threads print "yes"?
 - under sequential consistency?
 - under Go's memory model?

Munin's memory model

- Release consistency (RC)
 - Weaker than sequential consistency
- Key idea:
 - Access of shared data are commonly protected by synchronization primitives.
 - Sync primitives: Acquire (aka Lock), Release (aka Unlock)
- RC is a partial order:
 - All sync primitives are totally ordered
 - With a thread, the ordering of ordinary memory access w.r.t. synchronization primitive must be preserved

Why Release Consistency

- Release consistency is more efficient to implement
- A server's writes need not be visible to others until the next synchronization primitive

How RC addresses false sharing

A main DSM challenge: false sharing

False sharing leads to ping-ponging and write-amplification:

- To write one-byte to x, S1 transfers whole page from S2, invalidates the page at S2.
- To write one-byte to y, S2 transfers the page back from S1, invalidates the page at S1, and so on.

How RC addresses false sharing

A main DSM challenge: false sharing

False sharing leads to ping-ponging and write-amplification:

- To write one-byte to x, S1 transfers whole page from S2, invalidates the page at S2.
- To write one-byte to y, S2 transfers the page back from S1, invalidates the page at S1, and so on.

How RC addresses false sharing

A main DSM challenge: false sharing

False sharing leads to ping-ponging and write-amplification:

- To write one-byte to x, S1 transfers whole page from S2, invalidates the page at S2.
- To write one-byte to y, S2 transfers the page back from S1, invalidates the page at S1, and so on.

Idea: Write diffs + Release Consistency

 To write, transfer a copy, but do not invalidate other writable-copies of the page

Send out and merge diffs on release

Release Consistency

```
server-2
server-1
Acquire(Lx)
                                        Acquire(Ly)
for (i = 0; i < 100; i++) {
                                        for (i = 0; i < 100; i++) {
 X++;
                                          V++;
                                        Release(Ly)
Release(Lx)
                                                                 Acquire(Lx)
                       Acquire(Ly)
print x+y;
                                        print x+y;
                                                                 Release(Lx)
                        Release(Ly)
```

- What's the possible outcomes under Munin?
 -<100, 100> <200, 100> <100, 200> <200, 200>
- What's possible after adding new acquires/ release?
- How many network transfers?

DSM's failure story

- DSMs rely on checkpointing to recover from failure.
- Periodically checkpoint all servers' state.
- On recovery, load from last checkpoint and resume

Why no DSM now?

- Masking the difference between distributed and single-machine computation is too hard
- Difference in memory fetch latency is huge
 - 100 ns vs. 10us~1 ms
- Programs that make sense in single-machine setting are too slow on DSM

An example computation that's difficult for DSM: PageRank

$$R[i] = 0.15 + \sum_{j \in \mathrm{Nbrs}(i)} w_{ji} R[j]$$
 Rank of node i Weighted sum of neighbors' ranks

Iterate until convergence

Difficulty of DSM

$$R[i] = 0.15 + \sum_{j \in Nbrs(i)} w_{ji} R[j]$$

- 2 parallelization strategies:
 - Each thread calculates disjoint R[i], need to perform random (remote) reads for R[j] → too slow
 - Each thread works on disjoint R[j], computes $W_{j,i*}R[j]$, increments R[i] += $W_{j,i*}R[j]$, need to perform synchronized remote writes for R[i] \rightarrow too slow

Distributed Computation

The **Graph-Parallel** Abstraction

- A user-defined Vertex-Program runs on each vertex
- Graph constrains interaction along edges
 - Using messages (e.g. Pregel [PODC'09, SIGMOD'10])
 - Through shared state (e.g., GraphLab [UAI'10, VLDB'12])
- Parallelism: run multiple vertex programs simultaneously

The Pregel Abstraction

Vertex-Programs interact by sending **messages**.

```
Pregel_PageRank(i, messages) :
  // Receive all the messages
  total = 0
  foreach( msg in messages) :
    total = total + msg
  // Update the rank of this vertex
  R[i] = 0.15 + total
  // Send new messages to neighbors
  foreach(j in out_neighbors[i]) :
    Send msg(R[i] * w<sub>ii</sub>) to vertex j
```


The GraphLab Abstraction

Vertex-Programs directly **read** the neighbors state

GraphLab_PageRank(i) // Compute sum over neighbors total = 0

```
foreach( j in in_neighbors(i)):
  total = total + R[j] * w<sub>ji</sub>
```

```
// Update the PageRank
R[i] = 0.15 + total
```

```
// Trigger neighbors to run again
if R[i] not converged then
  foreach( j in out_neighbors(i)):
    signal vertex-program on j
```


Challenges of **High-Degree** Vertices

Sequentially process edges

Sends many messages (Pregel)

Touches a large fraction of graph (GraphLab)

Edge meta-data too large for single machine

Synchronous Execution prone to stragglers (Pregel)

Communication Overhead for High-Degree Vertices

Fan-In vs. Fan-Out

Pregel Message Combiners on Fan-In

• User defined **commutative associative** (+) message operation:

Pregel Struggles with Fan-Out

 Broadcast sends many copies of the same message to the same machine!

Fan-In and Fan-Out Performance

- PageRank on synthetic Power-Law Graphs
 - Piccolo was used to simulate Pregel with combiners

GraphLab Ghosting

Changes to master are synced to ghosts

GraphLab Ghosting

 Changes to neighbors of high degree vertices creates substantial network traffic

Fan-In and Fan-Out Performance

- PageRank on synthetic Power-Law Graphs
- GraphLab is undirected

Graph Partitioning

- Graph parallel abstractions rely on partitioning:
 - Minimize communication
 - Balance computation and storage

Random Partitioning

 Both GraphLab and Pregel resort to random (hashed) partitioning on natural graphs

$$\mathbb{E}\left[\frac{|Edges\ Cut|}{|E|}\right] = 1 - \frac{1}{p}$$

10 Machines → 90% of edges cut 100 Machines → 99% of edges cut!

PowerGraph at a high level

- How to partition graph-computation in the face of high-degree vertices?
- Contributions:
 - –GAS programming model
 - allows a single high-degree vertex to be parallelized
 - Vertex partitioning
 - assign edges (instead of nodes) to machines

A Common Pattern for Vertex-Programs

GraphLab_PageRank(i)

```
// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)):
  total = total + R[j] * w<sub>ji</sub>
```

Gather Information About Neighborhood

```
// Update the PageRank
R[i] = 0.1 + total
```

Update Vertex

```
// Trigger neighbors to run again
if R[i] not converged then
  foreach( j in out_neighbors(i))
    signal vertex-program on j
```

Signal Neighbors & Modify Edge Data

GAS Decomposition

Gather (Reduce)

Accumulate information about neighborhood

User Defined:

- ▶ Gather(\bigcirc) → Σ
- $\triangleright \Sigma_1 \oplus \Sigma_2 \rightarrow \Sigma_3$

Apply

Apply the accumulated value to center vertex

User Defined:

Scatter

Update adjacent edges and vertices.

User Defined:

Update Edge Data & Activate Neighbors

39

PageRank in PowerGraph

$$R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j]$$

PowerGraph_PageRank(i)

Gather($j \rightarrow i$): return $w_{ji} * R[j]$

sum(a, b): return a + b;

Apply(i,
$$\Sigma$$
) : R[i] = 0.15 + Σ

Scatter($i \rightarrow j$):

if R[i] changed then trigger j to be **recomputed**

Distributed Execution of a PowerGraph Vertex-Program

Gather
Apply
Scatter

Minimizing Communication in PowerGraph

Communication is linear in the number of machines each vertex spans

A vertex-cut minimizes machines each vertex spans

New Approach to Partitioning

Rather than cut edges:

For any edge-cut, one can directly construct a vertex-cut which requires strictly less communication and storage.

Must synchronize a **single** vertex

Constructing Vertex-Cuts

- Evenly assign edges to machines
 - Minimize machines spanned by each vertex
- Assign each edge as it is loaded
 - Touch each edge only once
- Propose three distributed approaches:
 - Random Edge Placement
 - Coordinated Greedy Edge Placement
 - **Oblivious Greedy** Edge Placement

Random Edge-Placement

Randomly assign edges to machines

Machine 1

Machine 2

Machine 3

Balanced Vertex-Cut

- Spans 3 Machines
- Spans 2 Machines
- Not cut!

Greedy Edge Placements

 Place edges on machines which already have the vertices in that edge.

Greedy Edge Placements

- De-randomization → greedily minimizes the expected number of machines spanned
- Coordinated Edge Placement
 - Requires coordination to place each edge
 - Slower: higher quality cuts
- Oblivious Edge Placement
 - Approx. greedy objective without coordination
 - Faster: lower quality cuts

Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Oblivious balances cost and partitioning time.

Greedy Vertex-Cuts Improve Performance

Greedy partitioning improves computation performance.

Summary

- DSM: use the same general single-machine model for distributed computation
 - use release consistency to improve performance
 - still hard to hide the performance difference between local and remote memory
- Graph Framework: "shared memory", but specialized for graph computation