DSM and
Graph Computation Frameworks

Jinyang Li
(GraphLab slides from Gonzalez’ OSDI talk)

Distributed Computation

[PowerGraph
lvy Munin Map) [Spark]
DSM | DSM | Reduce | Hadoop |

o ¢ o
1989 2005 2010
Distributed

computation in the 90s

focus on the
distributed shared
memory model

Distributed shared memory

Goal:

* Write any distributed computation the way
vou’'d write a single-machine multi-threaded
computation

Example: adding two arrays

float a[1<<30];
float b[1<<30];
float c[1<<30];

void addChunk(thread_id idx)

{
long long start = (1 << 20) * idx;
for (int i = start; i < start+(1<<20); i++) {
c[i] = a[i] + b[i];
}
}
void
main() {

//launch 1024 threads, each invoking function addChunk
launchThreads(1024, addChunk);

}

Distributed shared memory enabled
distributed multi-threading

float a[1<<30]
float b[1<<30]

float c[1<<30]

Advantages of the DSM model

* Familiar programming model
— shared variables, locks.

* General purpose

— Any type of computation can be supported
* unlike MapReduce, Spark

— Language agnostic

e Allow re-use of existing apps and library
written for single machine

Supporting DSM: conventional approach

each page in the address space is
assigned to a different node as “owner” —é_

O-FFFFF _ —

10000-1FFFFF

200000-2FFFFF _

I— ; \
(e i)

Supporting DSM: conventional approach

for (i = start; i<start+(1<<20); i++) { invalid |

c[i] = a[i]+blil;
}

invalid

invalid ’

mg

=

a
b
C

Supporting DSM: conventional approach
thread running on server-1 W
mo %rax — invalid |
v , =

Load instruction causes invalid
server-1’s hardware to take a page fault / \
server-1

u (e |
o

invalid

Server-1’s DSM runtime handles fault by
fetching page from server-2, fix permission
(only one page is wriable)

| _im =

Server-1’s hardware retries instruction alic / \ server-2
- (e i)

rw

r'w

DSM challenges

* Memory consistency model
— What should a read observe?

e Performance
— Is it fast? Is it scalable?

Memory consistency affects program

correctness
x=1 y=1
ify==0{ ifx==0{
print “yes” print “yes”
} }
/ \ / \
(e mmmm) (mmmne mmm)

* Will both threads print “yes”?
— under sequential consistency?
— under Go’s memory model?

Munin’s memory model

* Release consistency (RC)
— Weaker than sequential consistency

* Key idea:

— Access of shared data are commonly protected by
synchronization primitives.

— Sync primitives: Acquire (aka Lock), Release (aka
Unlock)
 RCis a partial order:
— All sync primitives are totally ordered

— With a thread, the ordering of ordinary memory
access w.r.t. synchronization primitive must be
preserved

Why Release Consistency

* Release consistency is more efficient to
implement

e A server’'s writes need not be visible to others
until the next synchronization primitive

How RC addresses false sharing

A main DSM challenge: false sharing

for (i=0; i< 100; i++) { for (i=0; i< 100; i++) {
X++; y++;
} ;
print x+y; print x+vy;
\ X,y arein
(mume i) the same page (nmumenimin)

False sharing leads to ping-ponging and write-amplification:

* To write one-byte to x, S1 transfers whole page from S2,
invalidates the page at S2.

 To write one-byte toy, S2 transfers the page back from
S1, invalidates the page at S1, and so on.

How RC addresses false sharing

A main DSM challenge: false sharing

rw
X++ x=0
y=0

(e | (e

False sharing leads to ping-ponging and write-amplification:

* To write one-byte to x, S1 transfers whole page from S2,
invalidates the page at S2.

 To write one-byte toy, S2 transfers the page back from
S1, invalidates the page at S1, and so on.

How RC addresses false sharing

A main DSM challenge: false sharing

x++ Xx=1 W @
y:O 1 y++

I

(e | (e

False sharing leads to ping-ponging and write-amplification:

* To write one-byte to x, S1 transfers whole page from S2,
invalidates the page at S2.

 To write one-byte toy, S2 transfers the page back from
S1, invalidates the page at S1, and so on.

ldea: Write diffs + Release Consistency

* To write, transfer a copy, but do not invalidate
other writable-copies of the page

rw

y=1
X++ y++

(e (e i

* Send out and merge diffs on release

Release Consistency

server-1 server-2

Acquire(Lx) Acquire(Ly)

for (i=0; i< 100; i++) { for (i=0; i< 100; i++) {

Xt++; y++;

J }

Release(Lx) Release(Ly) _

print x+y; Acquire(Ly) print x+y; Acquire(Lx)
Release(Ly) Release(Lx)

 What’s the possible outcomes under Munin?
— <100, 100> <200, 100> <100, 200> <200, 200>

* What’s possible after adding new acquires/
release?

* How many network transfers?

DSM’s failure story

* DSMs rely on checkpointing to recover from
failure.

* Periodically checkpoint all servers’ state.

* On recovery, load from last checkpoint and
resume

Why no DSM now?

 Masking the difference between distributed
and single-machine computation is too hard

* Difference in memory fetch latency is huge
— 100 ns vs. 10us™1 ms

* Programs that make sense in single-machine
setting are too slow on DSM

An example computation that’s
difficult for DSM: PageRank

Rli{] =015+ » w;R[j]

Rank of
node j Weighted sum of

neighbors’ ranks

* |terate until convergence

21

Difficulty of DSM
R[] =015+ » wjR[j]

e 2 parallelization strategies:

— Each thread calculates disjoint R[i], need to perform
random (remote) reads for R[j] = too slow

— Each thread works on disjoint R[j], computes
Wi;,i*R[j], increments R[i] += W;,i*R[j], need to perform
synchronized remote writes for R[i] =2 too slow

Distributed Computation

[PowerGraph
lvy Munin Map) [Spark]
DSM | DSM | Reduce | Hadoop |

o ¢ o
1989 2005 2010
Distributed

computation in the 90s

focus on the
distributed shared
memory model

23

The Graph-Parallel Abstraction

* A user-defined Vertex-Program runs on each vertex

* Graph constrains interaction along edges
— Using messages (e.g. Pregel [PODC’09, SIGMOD’10])
— Through shared state (e.g., GraphLab [UAI'10, VLDB’12])
* Parallelism: run multiple vertex programs simultaneously

@%\
@,

The Pregel Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :

" // Receive all the messages A
total = ©
foreach(msg in messages) :

. total = total + msg >

~N

/ // Update the rank of this vertex
R[i] = ©.15 + total

\

f // Send new messages to neighbors
foreach(j in out_neighbors[i]) :

Send msg(R[i] * w;;) to vertex j |

Malewicz et al.

25

The GraphlLab Abstraction

Vertex-Programs directly read the neighbors state

GraphLab_PageRank (i)

" // Compute sum over neighbors A

total = ©

foreach(j in in_neighbors(i)):

o total = total + R[J] * wy;

- // Update the PageRank
R[i] = ©0.15 + total

. /

- : : :
// Trigger neighbors to run again
if R[1i] not converged then
foreach(j in out _neighbors(i)):
signal vertex-program on j

Low et al.

26

Challenges of High-Degree Vertices

®

O— O

O

Sequentially process Sends many Touches a large Edge meta-data
edges messages fraction of graph too large for single
(Pregel) (GraphLab) machine

*—o
*—o
*—o
*—o
*—o
*—o

Synchronous Execution
prone to stragglers (Pregel)

*—o
*—o
*—o
*—o
*—o
*—o

Communication Overhead
for High-Degree Vertices

Pregel Message Combiners on Fan-In

Machine 1 Machine 2

* User defined commutative associative (+)
message operation:

Pregel Struggles with Fan-Out

NS
<—=]
00—

Machine 1 Machine 2

* Broadcast sends many copies of the same
message to the same machine!

Fan-In and Fan-Out Performance

 PageRank on synthetic Power-Law Graphs

— Piccolo was used to simulate Pregel with combiners

Total Comm. (GB)

1.8 1.9 2 2.1 2.2

Power-Law Constant a

= More high-degree vertices

GraphLab Ghosting

Machine 1 Machine 2

 Changes to master are synced to ghosts

GraphLab Ghosting

£~ Ghost
Machine 1 Machine 2

* Changes to neighbors of high degree vertices
creates substantial network traffic

Fan-In and Fan-Out Performance

* PageRank on synthetic Power-Law Graphs
 Graphlab is undirected

[ERY
o

0
‘e

| @

Total Comm. (GB)

O N B O O

1.8 1.9 2 2.1 2.2

Power-Law Constant alpha

< More high-degree vertices 3

Graph Partitioning

* Graph parallel abstractions rely on partitioning:
— Minimize communication
— Balance computation and storage

Machine 1 Machine 2

Random Partitioning

* Both GraphlLab and Pregel resort to random
(hashed) partitioning on natural graphs

>

|Edges Cut|

E|

1
—1——
P

10 Machines =2 90% of edges cut
100 Machines = 99% of edges cut!

PowerGraph at a high level

* How to partition graph-computation in
the face of high-degree vertices?

e Contributions:

—GAS programming model

* allows a single high-degree vertex to be
parallelized

—Vertex partitioning
e assign edges (instead of nodes) to machines

A Common Pattern for
Vertex-Programs

GraphLab_PageRank (i)
// Compute sum over neighbors

total = © Gather Information
foreach(j in in_neighbors(i)):

total = total + R[] * wj, About Neighborhood
// Update the PageRank
R[i] = ©.1 + total Update Vertex

// Trigger neighbors to run again
if R[i] not converged then Signal Neighbors &

foreach(j in out neighbors(i)) Modify Edge Data
signal vertex-program on j

GAS Decomposition

.
Gather (Reduce)

Accumulate information
about neighborhood

User Defined:
b Gather(@—@) > X

3, @3, D3,

Parallel
Sum

_

~

-

Apply
Apply the accumulated
value to center vertex

User Defined:
> Apply(@), 2) 2 (D

1.1..1-%

J

,

~

-

®,

_

Scatter
Update adjacent edges
and vertices.

User Defined:
> Scatter(@-@) 2> —

Update Edge Data &
Activate Neighbors

39

J

PageRank in PowerGraph

R[] =015+ » wjR[j]

PowerGraph_PageRank(i)

Gather(j = 1) :return w; * R[j]
sum(a, b) : return a + b;

Apply(i,2) : R[1]] =0.15 + =

Scatter(i—=2j):
if R[i] changed then trigger j to be recomputed

40

Distributed Execution of a
PowerGraph Vertex-Program

Machine 1 Machine 2
/ Master
Gather (@)
+ + ’ Mirror
Apply
Scatter °

Mirror
Mirror

Machine 3 Machine 4

Minimizing Communication in PowerGraph

Communication is linear in
the number of machines
each vertex spans

A vertex-cut minimizes
machines each vertex spans

42

New Approach to Partitioning

e Rather than cut edges:

For any edge-cut, one can directly
construct a vertex-cut which requires
strictly less communication and storage.

|:> | ~ Must synchronize
a single vertex

CPU 1 CPU 2

Constructing Vertex-Cuts

* Evenly assign edges to machines
— Minimize machines spanned by each vertex

* Assign each edge as it is loaded
— Touch each edge only once

* Propose three distributed approaches:
— Random Edge Placement
— Coordinated Greedy Edge Placement
— Oblivious Greedy Edge Placement

Random Edge-Placement

 Randomly assign edges to machines

Machine 1 Machine 2 Machine 3

Balanced Vertex-Cut

Greedy Edge Placements

* Place edges on machines which already have
the vertices in that edge.

0—O0 0—O0

Machinel Machine 2

0—0

46

Greedy Edge Placements

* De-randomization =2 greedily minimizes the
expected number of machines spanned

* Coordinated Edge Placement
— Requires coordination to place each edge
— Slower: higher quality cuts

* Oblivious Edge Placement
— Approx. greedy objective without coordination

— Faster: lower quality cuts

Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Cost Construction Time
5 18 1000 \
g 16 -
g 14 -g 800
l g 12 g 600 -
S 2 -
€ g = 400 7 Coordinated
5 6 £ 200 ,
’;:D 4 § \j%,n\do;;sg_q
<L 2 I I I I I I | '-E 0 I I I I I I |
8 16 24 32 40 48 56 64 & 8 16 24 32 40 48 56 64

Number of Machines Number of Machines

48

Runtime Relative

Greedy Vertex-Cuts Improve Performance

to Random

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

B Random
“ Oblivious

oordinated

PageRank Collaborative Shortest Path
Filtering

Greedy partitioning improves
computation performance.

49

Summary

* DSM: use the same general single-machine
model for distributed computation

— use release consistency to improve performance

— still hard to hide the performance difference
between local and remote memory

* Graph Framework: “shared memory”, but
specialized for graph computation

