Causal Consistency

Jinyang Li

some Bayou slides are adapted from Kyle
Jamieson’s lecture

What we’ve learnt so far

* Linearizability:

— equivalence to a serial ordering of events that
preserves global completion-to-issue order.

* Fault-tolerant implementation of linearizable
replication systems

— Paxos (MultiPaxos)
— Raft
— Viewstamped replication

Spectrum of Consistency Models

Easier to achieve

good performance easier to program

Weak/relaxed

Linearizability
[Herliny]

Causal Sequential

Consistenc Per-object sequential Cc?nsistenc (aka gxternal

Y Consistency ¥ Consistency)
[Lamport]

Eventual
Consistency

The downsides of linearizability

Linearizable replication needs good network
connectivity

Write latency
— must wait for a majority of servers to respond

Read latency
— w/o read lease: must contact a majority of servers

— w/ read lease: must renew lease with a majority of
servers

If a replica is disconnected?
— Can no longer be used

Relaxed consistency can have lower

latency & better availability

()

A

write req

), 4

write ack

()

A

read req

Apply a write request
to local replica

without

communication

return the result of
local replica without
communication

read result

What can go wrong?

1. Replica divergence
— replicas execute writes in different order

x=2 x=1

(e |
o ®

xX=2

/ \

[ummmeummml.

x=1 x=2

x=1

What can go wrong?

2. Causality violation

— replicas execute writes out of their natural cause-
effect order

/ \ .
(IS nmmm)
© 0

Write X=1

(remove boss .

from friends’ list) Read X=1 Write Y=1
/ \ (boss is not (complain about boss)
[IIEIIII a friend)

= —===0 > >
/ \ \ \
(e i) —

What can go wrong?

3. Non-linearizable reads

write x=1 Read x=1 Read y=0

® ® O — == = = ® o = = = = = o)

(e |

(e

What “wrongs” can be fixed

1. Divergent replicas
2. Causality violation

3. Non-linearizable reads

Causal ordering

* Definition of causal relationship: X =2 Y iff
— X, Y created by same site and X is before Y.

— X, Y created by site-i and j, and X “causes” Y,
examples:

* X is a send event at site-i, Y is the corresponding receive
event at site-j.

e Xis the write op at site-i, Y is the execution of X at site-j

— There exists Z, such that X=27Z2>Y

Causal ordering is a partial ordering

* If X2 Y, X happens before Y

* |f neither X=2Y, or Y=2X, then Xand Y are
“concurrent”

Lamport clock preserves causal
ordering

* Alogical clock used to assign timestamps to
events at each node

* Requirements:

— If X, Y are created at same site with X before Y,
TS(X) < TS(Y)
* A node advances logical clock, C = C+1, with each new
event

— If X “causes” Y, then TS(X) < TS(Y) =

* Upon receiving X with TSx, a node adjusts logical clock
upward, C = max(TSx+1, C)

Lamport clock: the algorithm

clock=5
/ \ >
(mmmunenmmim) ~——e
Write X=1
ts=6
clock=0
/ \ Read X=1 Write Y=1,

(nmmmme) ts=8
clock=2

clock=7 . ‘ >
/ \
(e) >

Lamport clock can be used for total
ordering

* All events can be totally ordered according to
tuple [lamport-ts, server-id]
— X<Yiff X.ts<Y.ts or X.ts = Y.ts and X.server-id <
Y.server-id

— This total ordering preserves causality

 Why total ordering?

— If replicas apply writes according to total ordering,
then replicas converge

Lamport clock question

e |f TS(X) < TS(Y), what does it say about X (created
by site-i) and Y (created by site-j)?
1. X occurred at a physical time earlier than'Y
2. Site-i must have communicated with Site-j

3. if Xis a send event from site i to j, then X must have
occurred at a physical time earlier than 'Y

4. if Xis a send event from process i to k (k#j), then X
must have occurred at a physical time earlier than Y

Bayou: A Weakly Connected
Replicated Storage System

* Motivating application: Meeting room
calendar
* Allow room reservation from any computer

* \Want everyone to see the same set of valid
reservations, eventually

— Eventually, no rooms are double booked

Paper context

* Early '90s when paper was written: Dawn of
PDAs, laptops, tablets

— H/W clunky but showing clear potential
e No wireless connections for devices.

* This problem has not gone away!
— Devices might be off, not have network access
— iPhone sync, Dropbox sync, collaborative editing

Bayou idea #1:
Replicate a log of writes

* Each server replicates a log of all writes.

e Servers sync with each other to learn of each
other’s writes

* The alternative:
— Each server directly modifies its state

— Servers sync state
— Why not alternative?

* expensive to discover
state difference

e Harder to resolve conflicts

Bayou idea #2: eventual consistent
ordering of log entries

* Replica convergence, guaranteed if:
— Eventually, all servers have all log entries

— Log entries follow the same total ordering at all
servers

— Log entries correspond to deterministic ops
e Causality preservation:

— Guaranteed if the total order preserves causality
(e.g. Lamport clock)

Bayou synchronization

* Each node maintains a log of Lamport clock
timestamped writes

* Pair-wise synchronization: X and Y, exchange
writes so that their logs become identical after

each sync.

How to sync, quickly?

A B
{10, X {10, X
(20, Y, 20, Y,
(30, X (30, X
{40, X

 Tosync B with A, B tells A the highest TS it has seen for
each other node

— Version vector: [X:30, Y:20]

— In response, A sends all X's updates after <30,X> , all Y's
updates after <20,X>

Server synchronization: an example

Time

Server synchronization: an example

Time

A B C
— w <0, C
W <1, B)
W QA

Previously, server A executed <2,A> as
the 1%t op.

Now, server A should execute <2,A> as
the 2" op

Problems of eventual ordering

* User expects to see the effects of his own
writes
— must execute local writes immediately without
communication

* Upon sync, servers receive writes whose
timestamps are earlier than writes that it has

already executed

Solution: Roll back and replay

Server A needs to the DB, and re-
run both ops in the lamport order.

Each server’s log consists of 2 portions:

— stable writes, followed by

— tentative writes

write W is stable iff:
— No entries will have a lamport timestamp < W.

To be useful, writes should become stabilized
soon-ish

How to stabilize writes?

Decentralized approach: Update <10, A> is stable if
all nodes have seen all updates with TS <10

If a node has seen updates with TS > 10 from every
node then it’ll never again see a timestamp < <10, A)

— So <10, A) s stable

Why doesn’t Bayou do this?

— Any server that remains disconnected would prevent
writes from stabilizing
 So many writes may be rolled back on re-connect

26

How Bayou commits writes

* Bayou uses a primary commit scheme
— One designated node (the primary) commits updates

* Servers sync with the primary

* Primary marks each write it receives with a
permanent CSN (commit sequence number)

— That write is committed
— Complete timestamp = <CSN, local TS, node-id>

How Bayou commits writes (2)

* Nodes exchange CSNs when they sync with each other

 CSNs define a total order for committed writes
— All nodes eventually agree on the total order
— writes come after all committed writes

Does CSN order preserve causality?

* Yes

e Aserver asks the primary to assign CSN for all
tentative writes (include those received from
others)

Tentative order # commit order

Time

A B C Pri
W <{-,10, A
W <-,20, B)
Logs {-,10, AY {-,20, B, {-,10, AY

Tentative order # commit order

Time A B C Pri
v
Logs 6,10 (5,20,B) |=| ¢5,20, B (5,20, B

Ao
| 6,10, A (6,10, A)

Trimming the log

* When nodes receive new CSNs, can discard all
committed log entries seen up to that point

— Update protocol = CSNs received in order

* Keep copy of whole database as of highest CSN

e Result: No need to keep years of log data

32

Syncing with trimmed logs

e Suppose nodes discard all writes in log with
CSNs

— Just keep a copy of the , reflecting
discarded entries

* Must not apply writes already in stable DB
— Remember writes with highest CSN in “stable” DB.

— If receiving a write with lower CSN, discard

Bayou idea #3: Application-specific conflict
resolution

* Roll-back and re-apply writes ensures replica
convergence

* But replica “convergence” is not sufficient for
application-level “consistency”.

What’s in a write?

e Suppose calendar update takes form, to reserve
1-hour meeting

— Write(key="Room410@10am”, value=“DS meeting”)

* What happens if Alice and Bob both reserve
10am slot?

Bayou’s application-specific conflict
resolution
* No blind write

e Bayou’s write is an app-specific
“1-hour meeting at 10 AM if Room 410 is free,
else at 11am, else at noon, else raise an error”

i

| Replicas converge if all servers execute same
I (] (] (]

i instructions in same order, eventually

Bayou’s application user interface

* Displayed meeting room calendar entries are
“Tentative” at first

— A user sees his meeting tentatively scheduled at
10 AM, later it might be moved to 11 AM

* Once committed, room reservation is secured
* |s this an intuitive interface?

Let’s step back

Is eventual consistency a useful idea?

Yes: people want fast writes to local copies
iIPhone sync, Dropbox, collaborative editing

Are update conflicts a real problem?

Yes—conflict resolution is application
dependent

Is Bayou’s complexity necessary?

 Much complexity is due to peer-to-peer sync

* Nowadays, a common sync model is with the
cloud

— keep the primary in the cloud
— every server syncs with the primary only

What are Bayou’s take-away ideas?

. Update functions for automatic application-
specific conflict resolution

. Ordered update log is the real truth, not the DB

. Application of Lamport logical clocks for causal
consistency

