
BitCoin
“Consensus” without Paxos

Jinyang Li

What we’ve learnt so far

• So far we discussed distributed systems within
data centers
– closed system
• Managed by a single administrative entity (e.g. Google)
• Only chosen machines participate
• Participating machines are trusted (cooperative)

• Ideal consisency (linearizability)
– Paxos for consensus (MultiPaxos for linearizable

replication)

Today: BitCoin

• Very different from all other systems we’ve
discussed in this class

• BitCoin is peer-to-peer (aka open system; aka
decentralized)
– any machine can participate in the protocol
– no single administrative entity

• BitCoin is the first practical cryptocurrency

Many cryptocurrencies exist today

BitCoin’s (original) goal

ü Portable
ü no need for trusted 3rd

party
ü anonymous
x Does not work online
x hard to monitor/tax
x need government to print

them

ü works online
ü✗ can repudiate
x requires trusted 3rd party
x tracks one’s purchases
x can prohibit some

transactions
x easy to

monitor/tax/control

BitCoin: e-cash without a central trusted party

Pros/cons of cash Pros/cons of credit cards

What’s hard socially/economically

• Why does e-cash have value?
• How to pay for infrastructure?
• What should be the monetary policy?
• What about laws? (taxes, money laundering,

drugs, terrorists)

What’s hard technically?

• Forgery
• Theft
• Double spending

Cryptography background

• Public key crypto
– Each key comes in a pair
– e ß Encrypt(data,)), data ß Decrypt(e,)
– ß Sign(data,)), verify(signature,)

• Cryptographic hash function (e.g. SHA-256)
– hx ß Hash(x)
– a
– Property:
• deterministic: same input à same output
• collision resistant: given h, it’s highly unlikelyl 2^(-256) to

find x’ such that hash(x’) = h = hash(x)

X: A buffer of
arbitrary length 256-bit integer

K,K −1

K K −1

K −1 K{data}
K−1

public
key

private
key

• Ownership of currency
= possession of some private key

• Transfer of currency
= signing “ownership” away to another party

• A “coin” is a transaction record
• T1: A transfers a coin to B
• T2: B transfers the coin to C
• How to ensure T2 is spending the same coin of

T1? (i.e. how to link T2 to T1)

Key idea #1: Cryptocurrency

{B→C}
B−1

{A→ B}
A−1

Key idea #1: Cryptocurrency

• Problem: How to link transaction records?
• Strawman: serial number
– If T1, T2 contain the same serial#, then they refer

to the same coin.
– Problem: did T1 come before T2? or vice versa?

• Idea: a secure chain of transaction records
• T2: {hash(T1),Bpub →Cpub}B

{•,Bpub →Cpub}B−1{•,Apub → Bpub}A−1

User-B User-C

I’d like to buy a pizza
{•,B→C}

B−1
{•,A→ B}

A−1

Your transaction is valid!

What’s hard technically?
• Forgery
• Theft
• Double spending✗

Pizza please

{•,B→C}
B−1

{•,A→ B}
A−1

noddle please

{•,B→D}
B−1

{•,A→ B}
A−1

How to defend against double-spending?

• Strawman: use a central trusted party (CP)
• Users submit all transactions to the CP
• CP verifies that no doublespending
– User-B signs T2 and gives it to User-C. User-C asks

CP to verify T2 before giving pizza to User-B.
– Later User-B signs T3 to give the same coin to

User-D. What happens?

✗ No longer peer-to-peer

Idea #2: Maintain a global log (ledger)

• All peers keep track of all transactions in a
global log (“public ledger”).
–Why log? (Why not a set?)

• Each transaction is replicated to all peers
• Forked log à double spending
• Problem: how to guarantee a non-forked log?
– Can we run Raft/MultiPaxos among all peers?

Why not use Paxos/Raft to maintain
the global ledger?

• Paxos does not scale to 10,000 nodes
• Paxos is not secure against malicious nodes
– There’s a version of Paxos (PBFT, Castro&Liskov)

that is secure if <1/3 nodes are malicious

• Vulnerable to Sybil attack
– adversary joins the network with many identities

so he controls >1/3 of all nodes

Idea #3: proof-of-work

• A peer can extend the log only after provably
having done a lot of work.

The BlockChain

Each block has many
transaction records

Proof of
work

Prev hash needed to
establish order and
non-repudiation

The BlockChain: proof-of-work

• To extend the chain, peer needs to find nonce, s.t.:

• hash(block, nonce) =

• There’s no better solution than brute-force
– hash(block, 0) = ?
– hash(block, 1) = ?
– hash(block, 2) = ?
–

• Running time? Difficulty= 2^d

000000

256-bit

d-bit

How to recover from “fork”s

• Two peers might “simultaneously” find different
legitimate next blocks à forks in the chain

• Resolved by taking the longest chain as the main
blockchain

• Unlike Paxos, blockchain does not guarantee
consensus
– It’s okay to temporarily disagree as long as eventual

agreement is reached in reasonable time.

Dealing with transient forks

• A valid block may be on a main branch or a
fork...

• A transaction is confirmed only after its block
is followed by 5 valid successor blocks.

How difficult should proof-of-work be?

• What if set to be too hard?
– limited transaction rate
– longer transaction latency

• What if set to be too easy?
– Higher chances of forking the main chainà lots of

wasted blocks.
• BitCoin: difficulty is set so that it takes entire

network 10 minutes to find the next block
– ~5 blocks wasted per day
– How long to confirm a transaction?

How hard should proof-of-work be?

• How do peers agree on difficulty for block #n?
–More peers à harder for each peer

• For every 2016 blocks found, each peer sets
the difficulty for the next (2016) blocks to be:
– 2 weeks / T

• BitCoin’s transaction rate? (1MB block size,
avg. transaction size 150B)
– (1MB/150B)/600sec = 11 transactions/sec

Time taken to find the prior 2016 blocks,
according to their timestamps

Bitcoin’s difficulty over years

Bitcoin’s incentives

• Why do people want to help with chain extension?
• Each new block contains a reward X coins, hence

extending blockchain is called “mining”
– this is how money gets minted
– X halves every 210,000 blocks (~ 4 years), eventually

stops after ~21 million coins
– Currently x=12.5

• Miners charge users a transaction fee to include
their transaction in the next block

The overall process

{*,B→C}
B−1

{*,D→ E}
D−1

T2

T3

T1, T2,T3,
nonce=?
prevhash

T2,T3, T4
nonce=?
prevhash

T3, T4,T5
nonce=?
prevhash

in-progress

in-progress

in-progress

T1, T2,T3,
nonce=1234
prevhash

found

validate next block has no
doublespenders, coins exist etc.

Shall I become a BitCoin miner now?
tr

ill
io

n
ha

sh
es

 p
er

 se
co

nd

Intel core i7: 24MHashes/sec
top-of-theline GPU: 1GHashes/sec
ASIC: 1000 GHashes/sec

Can Bitcoin scale well?

• Size of ledger grows over time
– currently at 253GB

• Cost of signature checks substantial
• Need to go back to very old blocks to check

validity of coins

Has BitCoin succeeded?

• In replacing cash/credit cards?
• Downsides of Bitcoin vs. cash
– no true anonymity (ledger is public information)

• Downside of Bitcoin vs. credit cards
– no disputes
– no loss/recovery

• ✗ Transactions take a long time to confirm.
• ✗ With the soaring price, transaction fee is

high ($20 in early 2018)

Alternative Cryptocurrencies

• BitCoin’s main problems:
– Slow transaction rate
–Wasteful (many CPU cycles wasted to mine blocks)
– The chain of coin transfers is public

Stella, Algorand

zCash

Algorand’s approach at a high level

• Overall idea: Use Byzantine Agreement to agree
on a ledger
– BA avoids forking under certain assumptions
• > 2/3 users are honest

• Challenges:
– (Security) How to be resilient against Sybils?
• Controlling >1/3 users is easy if an adversary can create

arbitrarily many pseudonyms

– (Scalability) How to make BA scale?
– (Availability) How to defend against targeted attacks?

Algorand uses proof-of-stake

• Money as “weights”
• PKs associated with weights = relative fraction

of money
–Weights = # of votes a node can cast in BA

• Proof-of-stake is resilient to Sybil attacks
– Attacker has to split wealth between pseudonyms
– Total weights do not change by adding more

pseudonyms

Algorand scales BA by sampling

• In traditional BA, every node broadcasts à
does not scale

• Algorand samples a random committee using
weights
– Sampling computation uses private key, produces

a non-interactive proof
– Selected users originate messages; others gossip

Scale BA by sampling
• How large should the committee be?
– Need n >= 3f+1 participants to deal with f bad users
– Traditional BA wait for 2f+1 votes on the same value
– But selection is random!
• No fixed n/f

Intersection must contain >=f+1 nodes for safety

Vote threshold is 2f+1

Scale BA by sampling

• Algorand’s threshold for votes
Probability of a

committee contains
>1/3 bad members for

some step of the
protocol

Want to learn more about
cryptocurrency?

Take Prof Joseph
Bonneau’s
cryptocurrency
class next Fall.

Final Exam Logistics

• Open book, no laptop/ipads
• Cover topics from the entire semester
• Length and format are similar to midterm
• Practice materials:
– Preparation questions
– Last year’s final will be posted on Piazza

