BitCoin "Consensus" without Paxos

Jinyang Li

What we've learnt so far

- So far we discussed distributed systems within data centers
 - closed system
 - Managed by a single administrative entity (e.g. Google)
 - Only chosen machines participate
 - Participating machines are trusted (cooperative)
- Ideal consisency (linearizability)
 - Paxos for consensus (MultiPaxos for linearizable replication)

Today: BitCoin

- Very different from all other systems we've discussed in this class
- BitCoin is peer-to-peer (aka open system; aka decentralized)
 - any machine can participate in the protocol
 - no single administrative entity
- BitCoin is the first practical cryptocurrency

Many cryptocurrencies exist today

#	Name	Symbol	Market Cap	Price	22	Maker	MKR	\$487,468,289	\$487.47
1	Ø Bitcoin	BTC	\$130,614,483,900	\$7,217.80	23	() USD Coin	USDC	\$476,659,583	\$1.00
2	Ethereum	ETH	\$15,589,501,022	\$143.18					
3	X XRP	XRP	\$9,611,176,686	\$0.222041	24	Dash	DASH	\$458,772,455	\$49.84
4	💎 Tether	USDT	\$4,149,632,878	\$1.01	25	Ethereum Classic	ETC	\$437,982,799	\$3.78
5	101 Bitcoin Cash	BCH	\$3,760,231,388	\$207.05	26	🐚 Ontology	ONT	\$377,364,902	\$0.592083
6	() Litecoin	LTC	\$2,799,464,202	\$43.87	27	Crypto.com Coin	CRO	\$354,331,561	\$0.028905
7	∅ EOS	EOS	\$2,433,406,956	\$2.58	28	V VeChain	VET	\$340,409,619	\$0.006139
8	🗇 Binance Coin	BNB	\$2,300,230,276	\$14.79	29	💎 NEM	XEM	\$318,590,385	\$0.035399
9	Bitcoin SV	BSV	\$1,712,594,306	\$94.78	30	🕼 HedgeTrade	HEDG	\$316,690,402	\$1.10
10	Ø Stellar	XLM	\$1,072,400,253	\$0.053474	31	💿 Dogecoin	DOGE	\$267,317,646	\$0.002184
11	🕈 Tezos	XTZ	\$1,045,408,692	\$1.58	32	2 Zcash	ZEC	\$257,270,522	\$31.98
12	Cardano	ADA	\$943,332,207	\$0.036384	33	A Basic Attention	BAT	\$249,147,055	\$0.176581
13	🕅 TRON	TRX	\$941,480,177	\$0.014119	34	O Paxos Standard	PAX	\$235,429,426	\$1.00
14	S Monero	XMR	\$922,854,808	\$53.19	35	2 Decred	DCR	\$215,145,044	\$19.95
15	UNUS SED LEO	LEO	\$895,162,292	\$0.895611	36	Synthetix Netw	SNX	\$199,061,096	\$1.33
16	O Chainlink	LINK	\$760,929,642	\$2.17	37	Qtum	QTUM	\$166,751,675	\$1.73
17	Cosmos	ATOM	\$700,771,457	\$3.67	38	TrueUSD	TUSD	\$160,615,128	\$1.00
18	👍 Huobi Token	нт	\$659,345,613	\$2.73	39	🗘 0x	ZRX	\$135,904,003	\$0.224850
19	R NEO	NEO	\$601,172,356	\$8.52	40	Centrality	CENNZ	\$131,896,923	\$0.123332
20	춯 IOTA	ΜΙΟΤΑ	\$548,419,195	\$0.197306	41	Algorand	ALGO	\$131,445,164	\$0.283688

BitCoin's (original) goal

Pros/cons of cash

- ✓ Portable
- ✓ no need for trusted 3rd party
- ✓ anonymous
- x Does not work online
- x hard to monitor/tax
- x need government to print them

Pros/cons of credit cards

- ✓ works online
- \checkmark X can repudiate
- x requires trusted 3rd party
- x tracks one's purchases
- x can prohibit some transactions
- x easy to monitor/tax/control

BitCoin: e-cash without a central trusted party

What's hard socially/economically

- Why does e-cash have value?
- How to pay for infrastructure?
- What should be the monetary policy?
- What about laws? (taxes, money laundering, drugs, terrorists)

What's hard technically?

- Forgery
- Theft
- Double spending

Cryptography background

public

private

- Public key crypto
 - Each key comes in a pair K, K^{-1}
 - $-e \leftarrow \text{Encrypt}(\text{data}, K)), \text{ data} \leftarrow \text{Decrypt}(e, K^{-1})$ $-\{\text{data}\}_{K^{-1}} \leftarrow \text{Sign}(\text{data}, K^{-1})), \text{ verify}(\text{signature}, K)$
- Cryptographic hash function (e.g. SHA-256)
 - $-h_x \leftarrow Hash(x)$

X: A buffer of arbitrary length

– Property:

256-bit integer

- deterministic: same input \rightarrow same output
- collision resistant: given h, it's highly unlikelyl 2^(-256) to find x' such that hash(x') = h = hash(x)

Key idea #1: Cryptocurrency

- Ownership of currency
 = possession of some private key
- Transfer of currency
 - = signing "ownership" away to another party
- A "coin" is a transaction record
- T1: A transfers a coin to B
- T2: B transfers the coin to C

$$\{A \rightarrow B\}_{A^{-1}}$$

$$\{B \to C\}_{B^{-1}}$$

• How to ensure T2 is spending the same coin of T1? (i.e. how to link T2 to T1)

Key idea #1: Cryptocurrency

- Problem: How to link transaction records?
- Strawman: serial number
 - If T1, T2 contain the same serial#, then they refer to the same coin.
 - Problem: did T1 come before T2? or vice versa?
- Idea: a secure chain of transaction records

• **T2:**
$$\{hash(T_1), B_{pub} \rightarrow C_{pub}\}_B$$

What's hard technically?

- Forgery
- Theft
- X Double spending

How to defend against double-spending?

- Strawman: use a central trusted party (CP)
- Users submit all transactions to the CP
- CP verifies that no doublespending
 - User-B signs T2 and gives it to User-C. User-C asks
 CP to verify T2 before giving pizza to User-B.
 - Later User-B signs T3 to give the same coin to User-D. What happens?
 - X No longer peer-to-peer

Idea #2: Maintain a global log (ledger)

- All peers keep track of all transactions in a global log ("public ledger").
 Why log? (Why not a set?)
- Each transaction is replicated to all peers
- Forked log \rightarrow double spending
- Problem: how to guarantee a non-forked log?
 Can we run Raft/MultiPaxos among all peers?

Why not use Paxos/Raft to maintain the global ledger?

- Paxos does not scale to 10,000 nodes
- Paxos is not secure against malicious nodes
 - There's a version of Paxos (PBFT, Castro&Liskov) that is secure if <1/3 nodes are malicious
- Vulnerable to Sybil attack
 - adversary joins the network with many identities so he controls >1/3 of all nodes

Idea #3: proof-of-work

• A peer can extend the log only after **provably** having done a lot of work.

The BlockChain

The BlockChain: proof-of-work

- To extend the chain, peer needs to find nonce, s.t.:
- hash(block, nonce) =

- There's no better solution than brute-force
 - hash(block, 0) = ?
 - hash(block, 1) = ?
 - hash(block, 2) = ?
 -
- Running time? Difficulty= 2^d

How to recover from "fork"s

- Two peers might "simultaneously" find different legitimate next blocks → forks in the chain
- Resolved by taking the longest chain as the main blockchain
- Unlike Paxos, blockchain does not guarantee consensus
 - It's okay to temporarily disagree as long as eventual agreement is reached in reasonable time.

Dealing with transient forks

- A valid block may be on a main branch or a fork...
- A transaction is confirmed only after its block is followed by 5 valid successor blocks.

How difficult should proof-of-work be?

- What if set to be too hard?
 - limited transaction rate
 - longer transaction latency
- What if set to be too easy?
 - Higher chances of forking the main chain → lots of wasted blocks.
- BitCoin: difficulty is set so that it takes entire network 10 minutes to find the next block
 - ~5 blocks wasted per day
 - How long to confirm a transaction?

How hard should proof-of-work be?

- How do peers agree on difficulty for block #n?
 More peers → harder for each peer
- For every 2016 blocks found, each peer sets the difficulty for the next (2016) blocks to be:

- 2 weeks / T

Time taken to find the prior 2016 blocks, according to their timestamps

• BitCoin's transaction rate? (1MB block size, avg. transaction size 150B)

- (1MB/150B)/600sec = 11 transactions/sec

Bitcoin's difficulty over years

Bitcoin's incentives

- Why do people want to help with chain extension?
- Each new block contains a reward X coins, hence extending blockchain is called "mining"
 - this is how money gets minted
 - X halves every 210,000 blocks (~ 4 years), eventually stops after ~21 million coins
 - Currently x=12.5
- Miners charge users a transaction fee to include their transaction in the next block

The overall process

Shall I become a BitCoin miner now?

Intel core i7: 24MHashes/sec top-of-theline GPU: 1GHashes/sec ASIC: 1000 GHashes/sec

Can Bitcoin scale well?

- Size of ledger grows over time

 currently at 253GB
- Cost of signature checks substantial
- Need to go back to very old blocks to check validity of coins

Has BitCoin succeeded?

- In replacing cash/credit cards?
- Downsides of Bitcoin vs. cash

 no true anonymity (ledger is public information)
- Downside of Bitcoin vs. credit cards
 - no disputes
 - no loss/recovery
- X Transactions take a long time to confirm.
- X With the soaring price, transaction fee is high (\$20 in early 2018)

Alternative Cryptocurrencies

- BitCoin's main problems:
 - Slow transaction rate
 - Wasteful (many CPU cycles wasted to mine blocks)
 - The chain of coin transfers is public

Stella, Algorand

zCash

Algorand's approach at a high level

- Overall idea: Use Byzantine Agreement to agree on a ledger
 - BA avoids forking under certain assumptions
 - > 2/3 users are honest
- Challenges:
 - (Security) How to be resilient against Sybils?
 - Controlling >1/3 users is easy if an adversary can create arbitrarily many pseudonyms
 - (Scalability) How to make BA scale?
 - (Availability) How to defend against targeted attacks?

Algorand uses proof-of-stake

- Money as "weights"
- PKs associated with weights = relative fraction of money
 - Weights = # of votes a node can cast in BA
- Proof-of-stake is resilient to Sybil attacks
 - Attacker has to split wealth between pseudonyms
 - Total weights do not change by adding more pseudonyms

Algorand scales BA by sampling

- In traditional BA, every node broadcasts → does not scale
- Algorand samples a random committee using weights
 - Sampling computation uses private key, produces a non-interactive proof
 - Selected users originate messages; others gossip

Scale BA by sampling

- How large should the committee be?
 - Need n >= 3f+1 participants to deal with f bad users
 - Traditional BA wait for 2f+1 votes on the same value
 - But selection is random!
 - No fixed n/f

Vote threshold is 2f+1

Intersection must contain >=f+1 nodes for safety

Scale BA by sampling

Want to learn more about cryptocurrency?

Take Prof Joseph Bonneau's cryptocurrency class next Fall.

Final Exam Logistics

- Open book, no laptop/ipads
- Cover topics from the entire semester
- Length and format are similar to midterm
- Practice materials:
 - Preparation questions
 - Last year's final will be posted on Piazza