
Distributed systems

Programming with threads



Reviews on OS concepts
• Each process occupies a single address space



Reviews on OS concepts
• A thread of (execution) control has its own PC

counter, stack pointer etc within a process.



Thread vs. Process
• Why threads?

– Thread allows running code concurrently
within a single process

– Switching among threads is light-weight
– Sharing data among threads requires no

inter-process communication
• Why processes?

– Fault isolation: One buggy process cannot
crash others



Why concurrent programming?

• Exploit multiple CPUs (multi-core)
• Exploit I/O concurrency

– Do some processing while waiting for disk
(network, terminals, etc.)

• Responsive GUI
– Respond to users while doing processing in the

background
• Reduce latency of networked services

– Servers serve multiple requests in parallel
– Clients issue multiple requests in parallel



Single threaded servers do
not fully utilize I/O and CPU
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Multi-threaded servers
achieve I/O concurrency
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Designing a thread interface

• Create and manage threads
– pthread_create, pthread_exit, pthread_join

• Provide mutual exclusion
– pthread_mutex_lock, pthread_mutex_unlock

• Coordinate among multiple threads
– pthread_cond_wait, pthread_cond_signal



Common Pitfalls

• Race condition
• Deadlock

– Better bugs than race
• Wrong lock granularity

– Leads to race or bad performance!
• Starvation



Remote procedure calls



RPC abstraction

• Everyone loves procedure calls
– Transfer control and data on local programs

• RPC goal: make client/server communication
look like procedure calls

• Easy to write programs with
– Procedure calls are a well-understood model
– RPC hides details of passing data between nodes



RPC vs. alternatives
• Alternatives:

– Sockets
– MPI
– Distributed shared memory (later classes)
– Map/Reduce, Dryad (later classes)

• RPC is very popular in programming
distributed systems
– XML RPC
– Java RMI
– Sun RPC



RPC architecture overview

• Servers export their local procedure APIs
• On client, RPC library generates RPC

requests over network to server
• On server, called procedure executes,

result returned in RPC response to client



RPC architecture
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Key challenges of RPC
• RPC semantics in the face of

– Communication failures
• delayed and lost messages
• connection resets
• expected packets never arrive

– Machine failures
• Server or client failures
• Did server fail before or after processing the request?

– Might be impossible to tell communication failures
from machine failures



RPC failure semantics
• RPC might return “failure” instead of results
• What are the possible outcomes in the face of

failures?
– Procedure did not execute
– Procedure executed once
– Procedure executed many times
– Procedure partially executed

• Desired semantics: at-most-once



YFS’s RPC library
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RPC semantics

• Does yfs rpc implement at-most-once
semantics?

• How would the lack of at-most-once
affect applications?



Interactions between threads
and RPCs

• Can a client hold locks across RPCs?

• Should it do so?

client_func()
{
   pthread_mutex_lock(&cl_lock);
   cl_rpcc->call(….)
   pthread_mutex_unlock(&cl_lock);
}



Interactions between threads
and RPC

• How about this client side code?

client_func()
{
   pthread_lock(&cl_lock);
   for (vector<rpcc>::iterator i = list.begin(); i != list.end(); i++) {
      pthread_mutex_unlock(&cl_lock);
      (*i).call(….)
      pthread_mutex_lock(&cl_lock);
   }
}



Interactions between threads
and RPCs

• Can a server make a RPC call during
RPC handler?


