
Distributed systems

Programming with threads

Reviews on OS concepts
• Each process occupies a single address space

Reviews on OS concepts
• A thread of (execution) control has its own PC

counter, stack pointer etc within a process.

Thread vs. Process
• Why threads?

– Thread allows running code concurrently
within a single process

– Switching among threads is light-weight
– Sharing data among threads requires no

inter-process communication
• Why processes?

– Fault isolation: One buggy process cannot
crash others

Why concurrent programming?

• Exploit multiple CPUs (multi-core)
• Exploit I/O concurrency

– Do some processing while waiting for disk
(network, terminals, etc.)

• Responsive GUI
– Respond to users while doing processing in the

background
• Reduce latency of networked services

– Servers serve multiple requests in parallel
– Clients issue multiple requests in parallel

Single threaded servers do
not fully utilize I/O and CPU

time

time

time
CPU usage

disk usage

Network usage

Multi-threaded servers
achieve I/O concurrency

time

time

time
CPU usage

disk usage

Network usage

Designing a thread interface

• Create and manage threads
– pthread_create, pthread_exit, pthread_join

• Provide mutual exclusion
– pthread_mutex_lock, pthread_mutex_unlock

• Coordinate among multiple threads
– pthread_cond_wait, pthread_cond_signal

Common Pitfalls

• Race condition
• Deadlock

– Better bugs than race
• Wrong lock granularity

– Leads to race or bad performance!
• Starvation

Remote procedure calls

RPC abstraction

• Everyone loves procedure calls
– Transfer control and data on local programs

• RPC goal: make client/server communication
look like procedure calls

• Easy to write programs with
– Procedure calls are a well-understood model
– RPC hides details of passing data between nodes

RPC vs. alternatives
• Alternatives:

– Sockets
– MPI
– Distributed shared memory (later classes)
– Map/Reduce, Dryad (later classes)

• RPC is very popular in programming
distributed systems
– XML RPC
– Java RMI
– Sun RPC

RPC architecture overview

• Servers export their local procedure APIs
• On client, RPC library generates RPC

requests over network to server
• On server, called procedure executes,

result returned in RPC response to client

RPC architecture

transmit

wait

receive

marshal
args

unmarshal
args

App
Client

RPC client library

rpc call

rpc call
return

receive

transmit

marshal
args

unmarshal
args

App
Server
rpc
handler

rpc
handler
return

RPC server library

RPC request

RPC response

work

Key challenges of RPC
• RPC semantics in the face of

– Communication failures
• delayed and lost messages
• connection resets
• expected packets never arrive

– Machine failures
• Server or client failures
• Did server fail before or after processing the request?

– Might be impossible to tell communication failures
from machine failures

RPC failure semantics
• RPC might return “failure” instead of results
• What are the possible outcomes in the face of

failures?
– Procedure did not execute
– Procedure executed once
– Procedure executed many times
– Procedure partially executed

• Desired semantics: at-most-once

YFS’s RPC library

transmit

wait

receive

marshal
args

unmarshal
args

lock_client

rpcc

rpc call

rpc call
return

receive

transmit

marshal
args

unmarshal
args

lock_server

rpc
handler

rpc
handler
return

RPC request

RPC response

work

rpcs

cl->call(lock_protocol::acquire, x, ret)

Server.reg(lock_protocol::acquire, &ls, &lock_server::acquire)

RPC semantics

• Does yfs rpc implement at-most-once
semantics?

• How would the lack of at-most-once
affect applications?

Interactions between threads
and RPCs

• Can a client hold locks across RPCs?

• Should it do so?

client_func()
{
 pthread_mutex_lock(&cl_lock);
 cl_rpcc->call(….)
 pthread_mutex_unlock(&cl_lock);
}

Interactions between threads
and RPC

• How about this client side code?

client_func()
{
 pthread_lock(&cl_lock);
 for (vector<rpcc>::iterator i = list.begin(); i != list.end(); i++) {
 pthread_mutex_unlock(&cl_lock);
 (*i).call(….)
 pthread_mutex_lock(&cl_lock);
 }
}

Interactions between threads
and RPCs

• Can a server make a RPC call during
RPC handler?

