
Prefetching in Visual Simulation
Chu-Ming Ng

+
, Cam-Thach Nguyen

+
, Dinh-Nguyen Tran

+
, Shin-We Yeow*, Tiow-Seng Tan

+

+
National University of Singapore *G Element Pte Ltd

1 Motivation

This project examines the problem of visual simulation of virtual
environment that is too large to fit into the main memory of a PC.
We broadly classify the problem into three subproblems: render,
query and prefetch, which correspond, respectively, to processing
data to be displayed, identifying and organizing data to be
retrieved, and retrieving (identified) data into main memory in
anticipation of the need to render them in the near future. Unlike
the first two subproblems, there is little existing work that reports
the prefetch subproblem in detail. Some existing applications
adopt advanced data indexing and layout in an application specific
way but leave the operating system to do the actual fetching
(paging) of data during runtime (see, for example, [LiPa02]).
There are also approaches that use speculative prefetching based
on the viewer’s current position and velocity to prefetch data
needed for future frames (see, for example, [CGLL98]). These are
sometimes coupled with sophisticated occlusion culling
techniques that reduce the amount of geometry that needs to be
fetched from disk (see, for example, [VaMa02]). On the whole, the
focus of current approaches is in solving the render and query
subproblems but it is not clear how these methods can provide
specific quality-of-service guarantee with respect to page fault
rates. The general lack of quantitative work on the prefetch
subproblem underlies our motivation to study it in detail.

2 Prefetching Issues

The main objective of any prefetching mechanism is to ensure that

any data that are needed for processing during any time of the

visual simulation are already loaded into the memory. Failure of

the prefetching mechanism to maintain the above objective results

in the occurrence of page faults. The aim of all prefetching

mechanism is thus to minimize the number of page faults to

support a given operating environment with a given system

configuration. At any time ti for the observer O, let Si be the

amount of data in the main memory M, and F the needed set of

data in its current viewing frustum. Then, prefetching wishes:

 F Si. (1)

Also, Si M. (2)

To maintain equation (1), one must perform some prefetching
starting at some later time t to obtain Sj by time tj. While
prefetching is on-going, O continues with its movement. Then, Si

must be large enough to fulfill equation (1) till Sj is available, i.e.

F Si for all time till time tj, (3)

and those data to be fetched (i.e. those in Sj but not in Si) must not
be larger than the amount of data that can be fetched from disk to
the main memory from t till tj:

Sj – Si H(tj – t) (4)

where H is the system data transfer rate (see Figure 1). When
equation (4) is not achieved by a prefetching request, we call it a
scheme failure. A scheme failure at time tj may not result in a page
fault at time tj as those pages that are yet to be fetched may not be
needed yet. Though scheme failures may be tolerable, they result
in no guarantee in system performance and thus should be
avoided. On the other hand, a page fault is a result of a scheme
failure. As such, we re-state the aim of prefetching mechanism as
minimizing the number of scheme failures.

Figure 1. At time t, the

prefetching mechanism decides

to start prefetching to obtain Sj.

As part of Sj is the same as that

of Si, the fetching only needed

for the part in Sj – Si.

3 Prefetching Schemes

For purposes of analysing prefetching schemes, we make the
following assumptions. First, we assume it is a 2D map with
uniform data density . Though this is unlikely the case in
practice, one choice is to set the density to be the highest density
of the map. This is reasonable as in the worst case, O can spend all
the time moving in the highest density part of the map. Second, we
assume that a prefetching scheme maintains the same size of the Sj

each time it calculates Sj. Third, at any time, there is at most one
outstanding prefetching work. That is, no prefetching thread can
be initiated until an ongoing prefetching has completed. If not, the
analysis can be modified to as if there is only one pending
prefetching work.

Shapes of Prefetch Region. We consider two shapes of prefetch
region. First, we have the fan shape as shown in Figure 2. Suppose
the motion of O is governed by its maximum speed and view
direction can change by a maximum angular speed . Then, the
calculation of Sj at location rj (see also Figure 1) is such that the
shortest amount of time for the frustum of O to touch Bj starting
at time t is the same in all directions for the given and . Such
is the amount of time that the system has enough data to run till
time t + without fetching more data. Second, we have the circle
shape as shown in Figure 3 where it extends the fan shape with
extra data to make it a circle. The reason to consider the circle
shape is that it eliminates the contribution of rotation to Sj – Si,
resulting in smaller amount of data need to be fetched each time.
It, however, requires much more memory to work.

Figure 2. Fan shape where the center

shaded triangle is the current viewing

frustum of O.

Figure 3. Circle shape

extended from the fan

shape.Emails: {ngchumin | nguyenca | trandinh}@comp.nus.edu.sg,

 shinwe@gelement.com, tants@comp.nus.edu.sg,

extended

 part

Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

One way to categorize prefetching schemes is to examine their
decisions on (a) whether to triggle prefetching at current time t and
(b) if so, the amount of data to be fetched, while honoring
equations (1) to (4). For a pre-determined shape of Si, both
decisions depend on the only factor of the distance of the current
frustum F to the boundary Bi of Si. The reasoning being as
follows: the nearer the distance, the less amount of time available
for prefetching before O moves out of Bi to possibly result in a
page fault, and the larger the amount of data in Sj – Si to fetch; see
again Figure 1 for the illustration. We analyse the following two
prefetching schemes.

Spatial Prefetching Scheme. The spatial prefetching scheme
employs a closed curve to be a threshold boundary bi as follows:
The system does not perform data fetches until the current frustum
touches the threshold boundary bi. When it does at time t, it
defines a new reference point rj at the observer location to
calculate Bj so as to fetch Sj – Si and to set the new threshold
boundary bj. It can be argued that the best spatial prefetching
scheme to support the largest is one with the shape S where its
reference point to the threshold boundary, and the threshold
boundary to its boundary are both of time away, for a total of 2
of data contained in S.

Temporal Prefetching Scheme. For the above spatial prefetching
scheme , the “busiest” situation is when it finishes a prefetch, the
frustum again touches the threshold boundary and thus
immediately initiates a new prefetch, and so on. In this case,
prefetches in every interval. Same in spirit to the “busiest”
situation of , a temporal prefetching scheme does its
prefetching at some regular interval of . To initiate a prefetch at
time t, it also sets the new reference point rj at the current location
of the observer to calculate Bj so as to fetch Sj – Si where Si has
sufficient data to enable computation till t + , and Sj will contain
enough data to enable computation from t + till t + 2 . The
scheme does not set any threshold boundary, but is to be
implemented with system interrupt at regular intervals of to
triggle prefetching.

4 Relationship between and

This section presents a relationship between data density and the
amount of prefetching time available for the temporal
prefetching scheme . The result also applies to the spatial
prefetching scheme as we discussed in the last section that
converges to in the worst case. To obtain the mentioned
relationship, we first study the maximum complement Sj – Si as in
Figure 1 using simple geometry. Let l denote the distance of the
far plane from the observer. We have:

(a) For fan shape:
2

2 2(4 2) ()
2

j iS S l
l l

(b) For circle shape:

1 2 2 2 (2 cos ())(2) (2) ()
2(2) 2

j iS S v v
v l v v l

v l

In the ideal case where the disk performance can be approximated
as a linear function H() = K(–), where K and are constants,
we can substitute the above into equation (4) to plot Figure 4 as
shown. Because (Sj – Si)/ is a quaratic function of , while H() is
a linear function, a large may result in bad performance (small
supported). On other hand, if is too small, harddisk overhead
contributes a big percentage in transfer time and result in bad
performance. In other words, there is a range of suitable to be
used to obtain good performance. This is conformed to the
experiments discussed in the next section.

Figure 4. Density

 can be supported

as a function of .

5 Experiment on Terrain Walkthrough

In our experiments, terrain data are used as it is easy to create
terrain datasets of different densities in a 2D map. Data are stored
in a grid of cells. We use temporal prefetching scheme that is
implemented as a thread separated from other threads such as the
rendering one. To realise the worst case situation, we force the
observer to run on a “tricky path” where the amount of data to be
prefetched is maximum each time a prefetching is performed. We
have run experiments on four densities, ranging from 75 to 112.5
Kbytes per cell with the chosen parameters indicated in the graph.
Our preliminary experiment results conform to the theoretical
prediction outlined in the previous section; that is, there is a good
range of with small number of scheme failures.

Figure 5. Experimental results on the number of scheme failures against .

6 Concluding Remarks

Our work aims to supplement the meager pool of knowledge in
understanding prefetching quantitatively. With this, one can
incorporate other practical consideration on building prefetching
systems to meet other challenges in real applications. We intend to
do further experimentation in different platforms. Also, there are a
lot of further works. One possible direction is to incorporate the
understanding into building a practical prefetching system as
mentioned in the above. Such practical system may support certain
path predictions, “urgent” queue prefetching for those page faults,
selective memory release when prefetching new data, special data
organization that incoporate LOD and occlusion [BaPa03] etc.

References
[BaPa03] X. Bao and R. Pajarola. “LOD-based Clustering

Techniques for Optimizing Large-scale Terrain Storage and
Visualization”, Proc. SPIE Conference on Visualization and
Data Analysis, 2003.

[CGLL98] H. Chim, M. Green, W. Lau, H. Leong and A. Si. “On
Caching and Prefetching of Virtual Objects in Distributed
Virtual Environments”, Proc. ACM Multimedia, pp. 171—180,
1998.

[LiPa02] P. Lindstrom and V. Pascucci. “Terrain Simplification
Simplified: A General Framework for View Dependent Out-of-
Core Visualization”, IEEE Transactions on Visualization and
Computer Graphics, 8(3), July-September 2002, pp. 239—254.

[VaMa02] G. Varadhan and D. Manocha. “Out of Core Rendering
of Massive Geometric Environments”, Proc. IEEE
Visualization, pp. 69—76, 2002.

0

20

40

60

80

100

120

0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

2.
7 3

3.
3

3.
6

3.
9

[second]

N
u

m
b

er
 o

f
sc

h
e
m

e
fa

il
u

re
s. 75 KB/cell 87.5 KB/cell

100 KB/cell 112.5 KB/cell

v = 400 m/sec

 = 6o /sec

l = 1 Km

 = 30o

Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

